Adaptive V/UV Speech Detection Based on Characterization of Background Noise
The paper presents an adaptive system for Voiced/Unvoiced (V/UV) speech detection in the presence of background noise. Genetic algorithms were used to select the features that offer the best V/UV detection according to the output of a background Noise Classifier (NC) and a Signal-to-Noise Ratio Esti...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | EURASIP Journal on Audio, Speech, and Music Processing |
Online Access: | http://dx.doi.org/10.1155/2009/965436 |
Summary: | The paper presents an adaptive system for Voiced/Unvoiced (V/UV) speech detection in the presence of background noise. Genetic algorithms were used to select the features that offer the best V/UV detection according to the output of a background Noise Classifier (NC) and a Signal-to-Noise Ratio Estimation (SNRE) system. The system was implemented, and the tests performed using the TIMIT speech corpus and its phonetic classification. The results were compared with a nonadaptive classification system and the V/UV detectors adopted by two important speech coding standards: the V/UV detection system in the ETSI ES 202 212 v1.1.2 and the speech classification in the Selectable Mode Vocoder (SMV) algorithm. In all cases the proposed adaptive V/UV classifier outperforms the traditional solutions giving an improvement of 25% in very noisy environments. |
---|---|
ISSN: | 1687-4714 1687-4722 |