The Solvability of a New System of Nonlinear Variational-Like Inclusions

<p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/>...

Full description

Bibliographic Details
Main Authors: Ume JeongSheok, Kang ShinMin, Liu Zeqing, Liu Min
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2009/609353
id doaj-654dbbf791ab4312a36d32dac8274862
record_format Article
spelling doaj-654dbbf791ab4312a36d32dac82748622020-11-25T00:36:52ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091609353The Solvability of a New System of Nonlinear Variational-Like InclusionsUme JeongSheokKang ShinMinLiu ZeqingLiu Min<p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/></inline-formula>-maximal monotone operators, strongly monotone operators, <inline-formula> <graphic file="1687-1812-2009-609353-i3.gif"/></inline-formula>-strongly monotone operators, relaxed monotone operators, cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i4.gif"/></inline-formula>-relaxed cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i5.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i6.gif"/></inline-formula>-relaxed cocoercive operators and relaxed Lipschitz operators in Hilbert spaces. By using the resolvent operator technique associated with <inline-formula> <graphic file="1687-1812-2009-609353-i7.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i8.gif"/></inline-formula>-maximal monotone operators and Banach contraction principle, we demonstrate the existence and uniqueness of solution for the system of nonlinear variational-like inclusions. The results presented in the paper improve and extend some known results in the literature.</p>http://www.fixedpointtheoryandapplications.com/content/2009/609353
collection DOAJ
language English
format Article
sources DOAJ
author Ume JeongSheok
Kang ShinMin
Liu Zeqing
Liu Min
spellingShingle Ume JeongSheok
Kang ShinMin
Liu Zeqing
Liu Min
The Solvability of a New System of Nonlinear Variational-Like Inclusions
Fixed Point Theory and Applications
author_facet Ume JeongSheok
Kang ShinMin
Liu Zeqing
Liu Min
author_sort Ume JeongSheok
title The Solvability of a New System of Nonlinear Variational-Like Inclusions
title_short The Solvability of a New System of Nonlinear Variational-Like Inclusions
title_full The Solvability of a New System of Nonlinear Variational-Like Inclusions
title_fullStr The Solvability of a New System of Nonlinear Variational-Like Inclusions
title_full_unstemmed The Solvability of a New System of Nonlinear Variational-Like Inclusions
title_sort solvability of a new system of nonlinear variational-like inclusions
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2009-01-01
description <p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/></inline-formula>-maximal monotone operators, strongly monotone operators, <inline-formula> <graphic file="1687-1812-2009-609353-i3.gif"/></inline-formula>-strongly monotone operators, relaxed monotone operators, cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i4.gif"/></inline-formula>-relaxed cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i5.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i6.gif"/></inline-formula>-relaxed cocoercive operators and relaxed Lipschitz operators in Hilbert spaces. By using the resolvent operator technique associated with <inline-formula> <graphic file="1687-1812-2009-609353-i7.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i8.gif"/></inline-formula>-maximal monotone operators and Banach contraction principle, we demonstrate the existence and uniqueness of solution for the system of nonlinear variational-like inclusions. The results presented in the paper improve and extend some known results in the literature.</p>
url http://www.fixedpointtheoryandapplications.com/content/2009/609353
work_keys_str_mv AT umejeongsheok thesolvabilityofanewsystemofnonlinearvariationallikeinclusions
AT kangshinmin thesolvabilityofanewsystemofnonlinearvariationallikeinclusions
AT liuzeqing thesolvabilityofanewsystemofnonlinearvariationallikeinclusions
AT liumin thesolvabilityofanewsystemofnonlinearvariationallikeinclusions
AT umejeongsheok solvabilityofanewsystemofnonlinearvariationallikeinclusions
AT kangshinmin solvabilityofanewsystemofnonlinearvariationallikeinclusions
AT liuzeqing solvabilityofanewsystemofnonlinearvariationallikeinclusions
AT liumin solvabilityofanewsystemofnonlinearvariationallikeinclusions
_version_ 1716141763064758272