The Solvability of a New System of Nonlinear Variational-Like Inclusions
<p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2009/609353 |
id |
doaj-654dbbf791ab4312a36d32dac8274862 |
---|---|
record_format |
Article |
spelling |
doaj-654dbbf791ab4312a36d32dac82748622020-11-25T00:36:52ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-0120091609353The Solvability of a New System of Nonlinear Variational-Like InclusionsUme JeongSheokKang ShinMinLiu ZeqingLiu Min<p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/></inline-formula>-maximal monotone operators, strongly monotone operators, <inline-formula> <graphic file="1687-1812-2009-609353-i3.gif"/></inline-formula>-strongly monotone operators, relaxed monotone operators, cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i4.gif"/></inline-formula>-relaxed cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i5.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i6.gif"/></inline-formula>-relaxed cocoercive operators and relaxed Lipschitz operators in Hilbert spaces. By using the resolvent operator technique associated with <inline-formula> <graphic file="1687-1812-2009-609353-i7.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i8.gif"/></inline-formula>-maximal monotone operators and Banach contraction principle, we demonstrate the existence and uniqueness of solution for the system of nonlinear variational-like inclusions. The results presented in the paper improve and extend some known results in the literature.</p>http://www.fixedpointtheoryandapplications.com/content/2009/609353 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ume JeongSheok Kang ShinMin Liu Zeqing Liu Min |
spellingShingle |
Ume JeongSheok Kang ShinMin Liu Zeqing Liu Min The Solvability of a New System of Nonlinear Variational-Like Inclusions Fixed Point Theory and Applications |
author_facet |
Ume JeongSheok Kang ShinMin Liu Zeqing Liu Min |
author_sort |
Ume JeongSheok |
title |
The Solvability of a New System of Nonlinear Variational-Like Inclusions |
title_short |
The Solvability of a New System of Nonlinear Variational-Like Inclusions |
title_full |
The Solvability of a New System of Nonlinear Variational-Like Inclusions |
title_fullStr |
The Solvability of a New System of Nonlinear Variational-Like Inclusions |
title_full_unstemmed |
The Solvability of a New System of Nonlinear Variational-Like Inclusions |
title_sort |
solvability of a new system of nonlinear variational-like inclusions |
publisher |
SpringerOpen |
series |
Fixed Point Theory and Applications |
issn |
1687-1820 1687-1812 |
publishDate |
2009-01-01 |
description |
<p/> <p>We introduce and study a new system of nonlinear variational-like inclusions involving <inline-formula> <graphic file="1687-1812-2009-609353-i1.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i2.gif"/></inline-formula>-maximal monotone operators, strongly monotone operators, <inline-formula> <graphic file="1687-1812-2009-609353-i3.gif"/></inline-formula>-strongly monotone operators, relaxed monotone operators, cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i4.gif"/></inline-formula>-relaxed cocoercive operators, <inline-formula> <graphic file="1687-1812-2009-609353-i5.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i6.gif"/></inline-formula>-relaxed cocoercive operators and relaxed Lipschitz operators in Hilbert spaces. By using the resolvent operator technique associated with <inline-formula> <graphic file="1687-1812-2009-609353-i7.gif"/></inline-formula>-<inline-formula> <graphic file="1687-1812-2009-609353-i8.gif"/></inline-formula>-maximal monotone operators and Banach contraction principle, we demonstrate the existence and uniqueness of solution for the system of nonlinear variational-like inclusions. The results presented in the paper improve and extend some known results in the literature.</p> |
url |
http://www.fixedpointtheoryandapplications.com/content/2009/609353 |
work_keys_str_mv |
AT umejeongsheok thesolvabilityofanewsystemofnonlinearvariationallikeinclusions AT kangshinmin thesolvabilityofanewsystemofnonlinearvariationallikeinclusions AT liuzeqing thesolvabilityofanewsystemofnonlinearvariationallikeinclusions AT liumin thesolvabilityofanewsystemofnonlinearvariationallikeinclusions AT umejeongsheok solvabilityofanewsystemofnonlinearvariationallikeinclusions AT kangshinmin solvabilityofanewsystemofnonlinearvariationallikeinclusions AT liuzeqing solvabilityofanewsystemofnonlinearvariationallikeinclusions AT liumin solvabilityofanewsystemofnonlinearvariationallikeinclusions |
_version_ |
1716141763064758272 |