Photonic Needles for Light Delivery in Deep Tissue-like Media
Abstract We demonstrate a new platform for minimally invasive, light delivery probes leveraging the maturing field of silicon photonics, enabling massively parallel fabrication of photonic structures. These Photonic Needles probes have sub-10 μm cross-sectional dimensions, lengths greater than 3 mm–...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-07-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-05746-7 |
Summary: | Abstract We demonstrate a new platform for minimally invasive, light delivery probes leveraging the maturing field of silicon photonics, enabling massively parallel fabrication of photonic structures. These Photonic Needles probes have sub-10 μm cross-sectional dimensions, lengths greater than 3 mm–surpassing 1000 to 1 aspect ratio, and are released completely into air without a substrate below. We show the Photonic Needles to be mechanically robust when inserted into 2% agarose. The propagation loss of these waveguides is low–on the order of 4 dB/cm. |
---|---|
ISSN: | 2045-2322 |