Noninertial effects on a scalar field in a spacetime with a magnetic screw dislocation
Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscill...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-10-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | http://link.springer.com/article/10.1140/epjc/s10052-019-7359-2 |
Summary: | Abstract We investigate rotating effects on a charged scalar field immersed in spacetime with a magnetic screw dislocation. In addition to the hard-wall potential, which we impose to satisfy a boundary condition from the rotating effect, we insert a Coulomb-type potential and the Klein–Gordon oscillator into this system, where, analytically, we obtain solutions of bound states which are influenced not only by the spacetime topology, but also by the rotating effects, as a Sagnac-type effect modified by the presence of the magnetic screw dislocation. |
---|---|
ISSN: | 1434-6044 1434-6052 |