About Nodal Systems for Lagrange Interpolation on the Circle

We study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of comple...

Full description

Bibliographic Details
Main Authors: E. Berriochoa, A. Cachafeiro, J. M. García Amor
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2012/421340
id doaj-651511eb4775464fa3f09bb846ae658e
record_format Article
spelling doaj-651511eb4775464fa3f09bb846ae658e2020-11-25T00:33:05ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/421340421340About Nodal Systems for Lagrange Interpolation on the CircleE. Berriochoa0A. Cachafeiro1J. M. García Amor2Departamento de Matemática Aplicada I, Facultad de Ciencias, Universidad de Vigo, 32004 Ourense, SpainDepartamento de Matemática Aplicada I, Escuela de Ingeniería Industrial, Universidad de Vigo, 36310 Vigo, SpainDepartamento de Matemática Aplicada I, Escuela de Ingeniería Industrial, Universidad de Vigo, 36310 Vigo, SpainWe study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of complex unimodular numbers and the class of functions is different from the usually studied. Moreover, some consequences for the Lagrange interpolation on [-1,1] and the Lagrange trigonometric interpolation are obtained.http://dx.doi.org/10.1155/2012/421340
collection DOAJ
language English
format Article
sources DOAJ
author E. Berriochoa
A. Cachafeiro
J. M. García Amor
spellingShingle E. Berriochoa
A. Cachafeiro
J. M. García Amor
About Nodal Systems for Lagrange Interpolation on the Circle
Journal of Applied Mathematics
author_facet E. Berriochoa
A. Cachafeiro
J. M. García Amor
author_sort E. Berriochoa
title About Nodal Systems for Lagrange Interpolation on the Circle
title_short About Nodal Systems for Lagrange Interpolation on the Circle
title_full About Nodal Systems for Lagrange Interpolation on the Circle
title_fullStr About Nodal Systems for Lagrange Interpolation on the Circle
title_full_unstemmed About Nodal Systems for Lagrange Interpolation on the Circle
title_sort about nodal systems for lagrange interpolation on the circle
publisher Hindawi Limited
series Journal of Applied Mathematics
issn 1110-757X
1687-0042
publishDate 2012-01-01
description We study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of complex unimodular numbers and the class of functions is different from the usually studied. Moreover, some consequences for the Lagrange interpolation on [-1,1] and the Lagrange trigonometric interpolation are obtained.
url http://dx.doi.org/10.1155/2012/421340
work_keys_str_mv AT eberriochoa aboutnodalsystemsforlagrangeinterpolationonthecircle
AT acachafeiro aboutnodalsystemsforlagrangeinterpolationonthecircle
AT jmgarciaamor aboutnodalsystemsforlagrangeinterpolationonthecircle
_version_ 1725317251489333248