About Nodal Systems for Lagrange Interpolation on the Circle
We study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of comple...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2012/421340 |
id |
doaj-651511eb4775464fa3f09bb846ae658e |
---|---|
record_format |
Article |
spelling |
doaj-651511eb4775464fa3f09bb846ae658e2020-11-25T00:33:05ZengHindawi LimitedJournal of Applied Mathematics1110-757X1687-00422012-01-01201210.1155/2012/421340421340About Nodal Systems for Lagrange Interpolation on the CircleE. Berriochoa0A. Cachafeiro1J. M. García Amor2Departamento de Matemática Aplicada I, Facultad de Ciencias, Universidad de Vigo, 32004 Ourense, SpainDepartamento de Matemática Aplicada I, Escuela de Ingeniería Industrial, Universidad de Vigo, 36310 Vigo, SpainDepartamento de Matemática Aplicada I, Escuela de Ingeniería Industrial, Universidad de Vigo, 36310 Vigo, SpainWe study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of complex unimodular numbers and the class of functions is different from the usually studied. Moreover, some consequences for the Lagrange interpolation on [-1,1] and the Lagrange trigonometric interpolation are obtained.http://dx.doi.org/10.1155/2012/421340 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
E. Berriochoa A. Cachafeiro J. M. García Amor |
spellingShingle |
E. Berriochoa A. Cachafeiro J. M. García Amor About Nodal Systems for Lagrange Interpolation on the Circle Journal of Applied Mathematics |
author_facet |
E. Berriochoa A. Cachafeiro J. M. García Amor |
author_sort |
E. Berriochoa |
title |
About Nodal Systems for Lagrange Interpolation on the Circle |
title_short |
About Nodal Systems for Lagrange Interpolation on the Circle |
title_full |
About Nodal Systems for Lagrange Interpolation on the Circle |
title_fullStr |
About Nodal Systems for Lagrange Interpolation on the Circle |
title_full_unstemmed |
About Nodal Systems for Lagrange Interpolation on the Circle |
title_sort |
about nodal systems for lagrange interpolation on the circle |
publisher |
Hindawi Limited |
series |
Journal of Applied Mathematics |
issn |
1110-757X 1687-0042 |
publishDate |
2012-01-01 |
description |
We study the convergence of the Laurent polynomials of Lagrange interpolation on the unit circle for continuous functions satisfying a condition about their modulus of continuity. The novelty of the result is that now the nodal systems are more general than those constituted by the n roots of complex unimodular numbers and the class of functions is different from the usually studied. Moreover, some consequences for the Lagrange interpolation on [-1,1] and the Lagrange trigonometric interpolation are obtained. |
url |
http://dx.doi.org/10.1155/2012/421340 |
work_keys_str_mv |
AT eberriochoa aboutnodalsystemsforlagrangeinterpolationonthecircle AT acachafeiro aboutnodalsystemsforlagrangeinterpolationonthecircle AT jmgarciaamor aboutnodalsystemsforlagrangeinterpolationonthecircle |
_version_ |
1725317251489333248 |