Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios.
The novel coronavirus (SARS-CoV-2), identified in China at the end of December 2019 and causing the disease COVID-19, has meanwhile led to outbreaks all over the globe with about 2.2 million confirmed cases and more than 150,000 deaths as of April 17, 2020. In this work, mathematical models are used...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0238559 |
id |
doaj-650dfb05ebe745cb9504230a1545e5e1 |
---|---|
record_format |
Article |
spelling |
doaj-650dfb05ebe745cb9504230a1545e5e12021-03-04T11:53:58ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01159e023855910.1371/journal.pone.0238559Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios.Maria Vittoria BarbarossaJan FuhrmannJan H MeinkeStefan KriegHridya Vinod VarmaNoemi CastellettiThomas LippertThe novel coronavirus (SARS-CoV-2), identified in China at the end of December 2019 and causing the disease COVID-19, has meanwhile led to outbreaks all over the globe with about 2.2 million confirmed cases and more than 150,000 deaths as of April 17, 2020. In this work, mathematical models are used to reproduce data of the early evolution of the COVID-19 outbreak in Germany, taking into account the effect of actual and hypothetical non-pharmaceutical interventions. Systems of differential equations of SEIR type are extended to account for undetected infections, stages of infection, and age groups. The models are calibrated on data until April 5. Data from April 6 to 14 are used for model validation. We simulate different possible strategies for the mitigation of the current outbreak, slowing down the spread of the virus and thus reducing the peak in daily diagnosed cases, the demand for hospitalization or intensive care units admissions, and eventually the number of fatalities. Our results suggest that a partial (and gradual) lifting of introduced control measures could soon be possible if accompanied by further increased testing activity, strict isolation of detected cases, and reduced contact to risk groups.https://doi.org/10.1371/journal.pone.0238559 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Maria Vittoria Barbarossa Jan Fuhrmann Jan H Meinke Stefan Krieg Hridya Vinod Varma Noemi Castelletti Thomas Lippert |
spellingShingle |
Maria Vittoria Barbarossa Jan Fuhrmann Jan H Meinke Stefan Krieg Hridya Vinod Varma Noemi Castelletti Thomas Lippert Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. PLoS ONE |
author_facet |
Maria Vittoria Barbarossa Jan Fuhrmann Jan H Meinke Stefan Krieg Hridya Vinod Varma Noemi Castelletti Thomas Lippert |
author_sort |
Maria Vittoria Barbarossa |
title |
Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. |
title_short |
Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. |
title_full |
Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. |
title_fullStr |
Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. |
title_full_unstemmed |
Modeling the spread of COVID-19 in Germany: Early assessment and possible scenarios. |
title_sort |
modeling the spread of covid-19 in germany: early assessment and possible scenarios. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
The novel coronavirus (SARS-CoV-2), identified in China at the end of December 2019 and causing the disease COVID-19, has meanwhile led to outbreaks all over the globe with about 2.2 million confirmed cases and more than 150,000 deaths as of April 17, 2020. In this work, mathematical models are used to reproduce data of the early evolution of the COVID-19 outbreak in Germany, taking into account the effect of actual and hypothetical non-pharmaceutical interventions. Systems of differential equations of SEIR type are extended to account for undetected infections, stages of infection, and age groups. The models are calibrated on data until April 5. Data from April 6 to 14 are used for model validation. We simulate different possible strategies for the mitigation of the current outbreak, slowing down the spread of the virus and thus reducing the peak in daily diagnosed cases, the demand for hospitalization or intensive care units admissions, and eventually the number of fatalities. Our results suggest that a partial (and gradual) lifting of introduced control measures could soon be possible if accompanied by further increased testing activity, strict isolation of detected cases, and reduced contact to risk groups. |
url |
https://doi.org/10.1371/journal.pone.0238559 |
work_keys_str_mv |
AT mariavittoriabarbarossa modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT janfuhrmann modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT janhmeinke modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT stefankrieg modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT hridyavinodvarma modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT noemicastelletti modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios AT thomaslippert modelingthespreadofcovid19ingermanyearlyassessmentandpossiblescenarios |
_version_ |
1714803212850036736 |