GIF Video Sentiment Detection Using Semantic Sequence

With the development of social media, an increasing number of people use short videos in social media applications to express their opinions and sentiments. However, sentiment detection of short videos is a very challenging task because of the semantic gap problem and sequence based sentiment unders...

Full description

Bibliographic Details
Main Authors: Dazhen Lin, Donglin Cao, Yanping Lv, Zheng Cai
Format: Article
Language:English
Published: Hindawi Limited 2017-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2017/6863174
Description
Summary:With the development of social media, an increasing number of people use short videos in social media applications to express their opinions and sentiments. However, sentiment detection of short videos is a very challenging task because of the semantic gap problem and sequence based sentiment understanding problem. In this context, we propose a SentiPair Sequence based GIF video sentiment detection approach with two contributions. First, we propose a Synset Forest method to extract sentiment related semantic concepts from WordNet to build a robust SentiPair label set. This approach considers the semantic gap between label words and selects a robust label subset which is related to sentiment. Secondly, we propose a SentiPair Sequence based GIF video sentiment detection approach that learns the semantic sequence to understand the sentiment from GIF videos. Our experiment results on GSO-2016 (GIF Sentiment Ontology) data show that our approach not only outperforms four state-of-the-art classification methods but also shows better performance than the state-of-the-art middle level sentiment ontology features, Adjective Noun Pairs (ANPs).
ISSN:1024-123X
1563-5147