A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions

The characterization of fossil-fuel CO<sub>2</sub> (ffCO<sub>2</sub>) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal v...

Full description

Bibliographic Details
Main Authors: J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders, S. A. McKenna
Format: Article
Language:English
Published: Copernicus Publications 2014-09-01
Series:Geoscientific Model Development
Online Access:http://www.geosci-model-dev.net/7/1901/2014/gmd-7-1901-2014.pdf
id doaj-64eb8843960b4177914bc5d33cf003ef
record_format Article
spelling doaj-64eb8843960b4177914bc5d33cf003ef2020-11-24T22:45:48ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032014-09-01751901191810.5194/gmd-7-1901-2014A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversionsJ. Ray0V. Yadav1A. M. Michalak2B. van Bloemen Waanders3S. A. McKenna4Sandia National Laboratories, P.O. Box 969, Livermore, CA 94551, USACarnegie Institution for Science, Stanford, CA 94305, USACarnegie Institution for Science, Stanford, CA 94305, USASandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0751, USAIBM Research, Smarter Cities Technology Centre, Bldg 3, Damastown Industrial Estate, Mulhuddart, Dublin 15, IrelandThe characterization of fossil-fuel CO<sub>2</sub> (ffCO<sub>2</sub>) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO<sub>2</sub> inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based) spatial parameterization for ffCO<sub>2</sub> emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas) yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP), is used to identify the wavelet coefficients. We find that (i) the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii) that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii) that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO<sub>2</sub> observations are available.http://www.geosci-model-dev.net/7/1901/2014/gmd-7-1901-2014.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Ray
V. Yadav
A. M. Michalak
B. van Bloemen Waanders
S. A. McKenna
spellingShingle J. Ray
V. Yadav
A. M. Michalak
B. van Bloemen Waanders
S. A. McKenna
A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
Geoscientific Model Development
author_facet J. Ray
V. Yadav
A. M. Michalak
B. van Bloemen Waanders
S. A. McKenna
author_sort J. Ray
title A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
title_short A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
title_full A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
title_fullStr A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
title_full_unstemmed A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
title_sort multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions
publisher Copernicus Publications
series Geoscientific Model Development
issn 1991-959X
1991-9603
publishDate 2014-09-01
description The characterization of fossil-fuel CO<sub>2</sub> (ffCO<sub>2</sub>) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO<sub>2</sub> inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based) spatial parameterization for ffCO<sub>2</sub> emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas) yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP), is used to identify the wavelet coefficients. We find that (i) the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii) that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii) that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO<sub>2</sub> observations are available.
url http://www.geosci-model-dev.net/7/1901/2014/gmd-7-1901-2014.pdf
work_keys_str_mv AT jray amultiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT vyadav amultiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT ammichalak amultiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT bvanbloemenwaanders amultiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT samckenna amultiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT jray multiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT vyadav multiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT ammichalak multiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT bvanbloemenwaanders multiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
AT samckenna multiresolutionspatialparameterizationfortheestimationoffossilfuelcarbondioxideemissionsviaatmosphericinversions
_version_ 1725687504425713664