Increased planting density combined with reduced nitrogen rate to achieve high yield in maize

Abstract The combination effects of nitrogen (N) fertilizer and planting density on maize yield, N use efficiency and the characteristics of canopy radiation capture and radiation use efficiency are not well documented in the Huanghuaihai Plain region in China. A 2-year field experiment was conducte...

Full description

Bibliographic Details
Main Authors: Xiangbei Du, Zhi Wang, Weixia Lei, Lingcong Kong
Format: Article
Language:English
Published: Nature Publishing Group 2021-01-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-020-79633-z
Description
Summary:Abstract The combination effects of nitrogen (N) fertilizer and planting density on maize yield, N use efficiency and the characteristics of canopy radiation capture and radiation use efficiency are not well documented in the Huanghuaihai Plain region in China. A 2-year field experiment was conducted from 2017 to 2018 in a split plot design with two N levels (240 and 204 kg N ha−1) applied to main plots and three plant densities (67,500, 77,625 and 87,750 plants ha−1) allocated to sub plots. Our results show that a 30% greater plant density combined with a 15% lower N rate (basal N) enhanced N partial factor productivity (NPFP) by 24.7% and maize grain yield by 6.6% compared with those of the conventional high N rate combined with a low density planting management practice. The yield increase was mainly attributed to significantly increased kernel numbers and biomass. The increased intercepted photosynthetically active radiation (IPAR) was the primary factor responsible for the high productivity of maize at increased planting density under reduced N conditions. The results indicate that increase planting density with reduced basal N application might benefit maize cropping for achieving high yields and sustainable development of agriculture.
ISSN:2045-2322