Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator
Abstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2017-11-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-017-0904-8 |
id |
doaj-64db8af0fda8414aa75ce62de9ee256a |
---|---|
record_format |
Article |
spelling |
doaj-64db8af0fda8414aa75ce62de9ee256a2020-11-24T22:18:06ZengSpringerOpenBoundary Value Problems1687-27702017-11-012017111710.1186/s13661-017-0904-8Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operatorXuemei Zhang0Meiqiang Feng1Department of Mathematics and Physics, North China Electric Power UniversitySchool of Applied Science, Beijing Information Science & Technology UniversityAbstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1 ) = 0 , $$\textstyle\begin{cases} ( (u'(t) )^{n} )'=\lambda nt^{n-1}f (-u(t) ), \quad t\in(0,1), t\neq t_{k}, k=1, 2, \ldots, m, \\ \Delta (u' )^{n}|_{t=t_{k}}=\lambda I_{k} (-u(t_{k}) ), \quad k=1, 2, \ldots , m, \\ u'(0)=0, \quad\quad u(1)=0, \end{cases} $$ where λ is a nonnegative parameter and n ≥ 1 $n\geq1$ . We show the existence, uniqueness, and continuity results. Our approach is largely based on the eigenvalue theory and the theory of α-concave operators. The nonexistence result of a nontrivial convex solution is also studied by taking advantage of the internal geometric properties related to the problem.http://link.springer.com/article/10.1186/s13661-017-0904-8continuity on a parameterexistence of nontrivial convex solutionsMonge-Ampère operatorimpulsive differential equationgeometric properties |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xuemei Zhang Meiqiang Feng |
spellingShingle |
Xuemei Zhang Meiqiang Feng Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator Boundary Value Problems continuity on a parameter existence of nontrivial convex solutions Monge-Ampère operator impulsive differential equation geometric properties |
author_facet |
Xuemei Zhang Meiqiang Feng |
author_sort |
Xuemei Zhang |
title |
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator |
title_short |
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator |
title_full |
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator |
title_fullStr |
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator |
title_full_unstemmed |
Nontrivial convex solutions on a parameter of impulsive differential equation with Monge-Ampère operator |
title_sort |
nontrivial convex solutions on a parameter of impulsive differential equation with monge-ampère operator |
publisher |
SpringerOpen |
series |
Boundary Value Problems |
issn |
1687-2770 |
publishDate |
2017-11-01 |
description |
Abstract The authors consider the impulsive differential equation with Monge-Ampère operator in the form of { ( ( u ′ ( t ) ) n ) ′ = λ n t n − 1 f ( − u ( t ) ) , t ∈ ( 0 , 1 ) , t ≠ t k , k = 1 , 2 , … , m , Δ ( u ′ ) n | t = t k = λ I k ( − u ( t k ) ) , k = 1 , 2 , … , m , u ′ ( 0 ) = 0 , u ( 1 ) = 0 , $$\textstyle\begin{cases} ( (u'(t) )^{n} )'=\lambda nt^{n-1}f (-u(t) ), \quad t\in(0,1), t\neq t_{k}, k=1, 2, \ldots, m, \\ \Delta (u' )^{n}|_{t=t_{k}}=\lambda I_{k} (-u(t_{k}) ), \quad k=1, 2, \ldots , m, \\ u'(0)=0, \quad\quad u(1)=0, \end{cases} $$ where λ is a nonnegative parameter and n ≥ 1 $n\geq1$ . We show the existence, uniqueness, and continuity results. Our approach is largely based on the eigenvalue theory and the theory of α-concave operators. The nonexistence result of a nontrivial convex solution is also studied by taking advantage of the internal geometric properties related to the problem. |
topic |
continuity on a parameter existence of nontrivial convex solutions Monge-Ampère operator impulsive differential equation geometric properties |
url |
http://link.springer.com/article/10.1186/s13661-017-0904-8 |
work_keys_str_mv |
AT xuemeizhang nontrivialconvexsolutionsonaparameterofimpulsivedifferentialequationwithmongeampereoperator AT meiqiangfeng nontrivialconvexsolutionsonaparameterofimpulsivedifferentialequationwithmongeampereoperator |
_version_ |
1725783228133933056 |