Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations

Single and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics>...

Full description

Bibliographic Details
Main Authors: Martin Jehser, Gerhard Zifferer, Christos N. Likos
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Polymers
Subjects:
DPD
Online Access:https://www.mdpi.com/2073-4360/11/3/541
id doaj-64d3bea855d34baab5c3002ef18f4c79
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Martin Jehser
Gerhard Zifferer
Christos N. Likos
spellingShingle Martin Jehser
Gerhard Zifferer
Christos N. Likos
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
Polymers
DPD
polymer brush
polymer rings
computer simulation
scaling theory
effective interactions
author_facet Martin Jehser
Gerhard Zifferer
Christos N. Likos
author_sort Martin Jehser
title Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
title_short Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
title_full Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
title_fullStr Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
title_full_unstemmed Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
title_sort scaling and interactions of linear and ring polymer brushes via dpd simulations
publisher MDPI AG
series Polymers
issn 2073-4360
publishDate 2019-03-01
description Single and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>, as well as chain lengths <i>N</i> and brush separations <i>D</i>, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of gyration <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula>, the shape as asphericity <inline-formula> <math display="inline"> <semantics> <msup> <mi>δ</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, and orientation <inline-formula> <math display="inline"> <semantics> <msup> <mi>β</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, as well as density profiles as functions of distance from grafting plane <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, are studied. The effect of an added bond repulsion potential to suppress bond crossing in DPD is analyzed. Scaling laws of <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula> and its components <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> </semantics> </math> </inline-formula> are investigated. We find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>N</mi> <mi>ν</mi> </msup> <mo>,</mo> <mi>ν</mi> <mo>=</mo> <mn>0.588</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages below the overlap surface concentration <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>&gt;</mo> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </mrow> </semantics> </math> </inline-formula> we find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> <mo>≅</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> of ring brushes with the standard DPD model and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>≅</mo> <mn>2</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> with added bond repulsion. The <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> dependence of the radius of gyration was found to be <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <mi>μ</mi> </msup> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages grater than <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. The perpendicular component <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> scales independent of the bond repulsion potential as <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, whereas the scaling of the parallel component exhibits a topological repulsion dependence <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>12</mn> </mrow> </semantics> </math> </inline-formula> for standard DPD and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </semantics> </math> </inline-formula> for bond repulsion.
topic DPD
polymer brush
polymer rings
computer simulation
scaling theory
effective interactions
url https://www.mdpi.com/2073-4360/11/3/541
work_keys_str_mv AT martinjehser scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations
AT gerhardzifferer scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations
AT christosnlikos scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations
_version_ 1725884384076103680
spelling doaj-64d3bea855d34baab5c3002ef18f4c792020-11-24T21:50:23ZengMDPI AGPolymers2073-43602019-03-0111354110.3390/polym11030541polym11030541Scaling and Interactions of Linear and Ring Polymer Brushes via DPD SimulationsMartin Jehser0Gerhard Zifferer1Christos N. Likos2Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, AustriaFaculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, AustriaFaculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, AustriaSingle and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>, as well as chain lengths <i>N</i> and brush separations <i>D</i>, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of gyration <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula>, the shape as asphericity <inline-formula> <math display="inline"> <semantics> <msup> <mi>δ</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, and orientation <inline-formula> <math display="inline"> <semantics> <msup> <mi>β</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, as well as density profiles as functions of distance from grafting plane <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, are studied. The effect of an added bond repulsion potential to suppress bond crossing in DPD is analyzed. Scaling laws of <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula> and its components <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> </semantics> </math> </inline-formula> are investigated. We find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>N</mi> <mi>ν</mi> </msup> <mo>,</mo> <mi>ν</mi> <mo>=</mo> <mn>0.588</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages below the overlap surface concentration <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>&gt;</mo> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </mrow> </semantics> </math> </inline-formula> we find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> <mo>≅</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> of ring brushes with the standard DPD model and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>≅</mo> <mn>2</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> with added bond repulsion. The <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> dependence of the radius of gyration was found to be <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <mi>μ</mi> </msup> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages grater than <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. The perpendicular component <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> scales independent of the bond repulsion potential as <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, whereas the scaling of the parallel component exhibits a topological repulsion dependence <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>12</mn> </mrow> </semantics> </math> </inline-formula> for standard DPD and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </semantics> </math> </inline-formula> for bond repulsion.https://www.mdpi.com/2073-4360/11/3/541DPDpolymer brushpolymer ringscomputer simulationscaling theoryeffective interactions