Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations
Single and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Polymers |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4360/11/3/541 |
id |
doaj-64d3bea855d34baab5c3002ef18f4c79 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Martin Jehser Gerhard Zifferer Christos N. Likos |
spellingShingle |
Martin Jehser Gerhard Zifferer Christos N. Likos Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations Polymers DPD polymer brush polymer rings computer simulation scaling theory effective interactions |
author_facet |
Martin Jehser Gerhard Zifferer Christos N. Likos |
author_sort |
Martin Jehser |
title |
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations |
title_short |
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations |
title_full |
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations |
title_fullStr |
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations |
title_full_unstemmed |
Scaling and Interactions of Linear and Ring Polymer Brushes via DPD Simulations |
title_sort |
scaling and interactions of linear and ring polymer brushes via dpd simulations |
publisher |
MDPI AG |
series |
Polymers |
issn |
2073-4360 |
publishDate |
2019-03-01 |
description |
Single and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>, as well as chain lengths <i>N</i> and brush separations <i>D</i>, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of gyration <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula>, the shape as asphericity <inline-formula> <math display="inline"> <semantics> <msup> <mi>δ</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, and orientation <inline-formula> <math display="inline"> <semantics> <msup> <mi>β</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, as well as density profiles as functions of distance from grafting plane <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, are studied. The effect of an added bond repulsion potential to suppress bond crossing in DPD is analyzed. Scaling laws of <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula> and its components <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> </semantics> </math> </inline-formula> are investigated. We find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>N</mi> <mi>ν</mi> </msup> <mo>,</mo> <mi>ν</mi> <mo>=</mo> <mn>0.588</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages below the overlap surface concentration <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>></mo> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </mrow> </semantics> </math> </inline-formula> we find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> <mo>≅</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> of ring brushes with the standard DPD model and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>≅</mo> <mn>2</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> with added bond repulsion. The <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> dependence of the radius of gyration was found to be <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <mi>μ</mi> </msup> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages grater than <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. The perpendicular component <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> scales independent of the bond repulsion potential as <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, whereas the scaling of the parallel component exhibits a topological repulsion dependence <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>12</mn> </mrow> </semantics> </math> </inline-formula> for standard DPD and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </semantics> </math> </inline-formula> for bond repulsion. |
topic |
DPD polymer brush polymer rings computer simulation scaling theory effective interactions |
url |
https://www.mdpi.com/2073-4360/11/3/541 |
work_keys_str_mv |
AT martinjehser scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations AT gerhardzifferer scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations AT christosnlikos scalingandinteractionsoflinearandringpolymerbrushesviadpdsimulations |
_version_ |
1725884384076103680 |
spelling |
doaj-64d3bea855d34baab5c3002ef18f4c792020-11-24T21:50:23ZengMDPI AGPolymers2073-43602019-03-0111354110.3390/polym11030541polym11030541Scaling and Interactions of Linear and Ring Polymer Brushes via DPD SimulationsMartin Jehser0Gerhard Zifferer1Christos N. Likos2Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, AustriaFaculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, AustriaFaculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, AustriaSingle and double layers of polymer coated surfaces are investigated by means of Dissipative Particle Dynamics (DPD), focusing on the difference between grafted ring and linear chains. Several different surface coverages <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula>, as well as chain lengths <i>N</i> and brush separations <i>D</i>, are analyzed for athermal, i.e., good solvent, conditions. The size in the form of the radius of gyration <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula>, the shape as asphericity <inline-formula> <math display="inline"> <semantics> <msup> <mi>δ</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, and orientation <inline-formula> <math display="inline"> <semantics> <msup> <mi>β</mi> <mo>∗</mo> </msup> </semantics> </math> </inline-formula>, as well as density profiles as functions of distance from grafting plane <inline-formula> <math display="inline"> <semantics> <mrow> <mi>ρ</mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, are studied. The effect of an added bond repulsion potential to suppress bond crossing in DPD is analyzed. Scaling laws of <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mi>g</mi> </msub> </semantics> </math> </inline-formula> and its components <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> </semantics> </math> </inline-formula> are investigated. We find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>N</mi> <mi>ν</mi> </msup> <mo>,</mo> <mi>ν</mi> <mo>=</mo> <mn>0.588</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages below the overlap surface concentration <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. For <inline-formula> <math display="inline"> <semantics> <mrow> <mi>σ</mi> <mo>></mo> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </mrow> </semantics> </math> </inline-formula> we find <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>⊥</mo> </msub> <mo>≅</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>N</mi> <msub> <mi>ν</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula> of ring brushes with the standard DPD model and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>ν</mi> <mo>∥</mo> </msub> <mo>≅</mo> <mn>2</mn> <mo>/</mo> <mn>5</mn> </mrow> </semantics> </math> </inline-formula> with added bond repulsion. The <inline-formula> <math display="inline"> <semantics> <mi>σ</mi> </semantics> </math> </inline-formula> dependence of the radius of gyration was found to be <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mi>g</mi> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <mi>μ</mi> </msup> </mrow> </semantics> </math> </inline-formula> with <inline-formula> <math display="inline"> <semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> for surface coverages grater than <inline-formula> <math display="inline"> <semantics> <msub> <mi>σ</mi> <mo>∗</mo> </msub> </semantics> </math> </inline-formula>. The perpendicular component <inline-formula> <math display="inline"> <semantics> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> </semantics> </math> </inline-formula> scales independent of the bond repulsion potential as <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>⊥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>⊥</mo> </msub> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>, whereas the scaling of the parallel component exhibits a topological repulsion dependence <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>g</mi> <mo>∥</mo> </mrow> </msub> <mo>∝</mo> <msup> <mi>σ</mi> <msub> <mi>μ</mi> <mo>∥</mo> </msub> </msup> <mo>,</mo> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>12</mn> </mrow> </semantics> </math> </inline-formula> for standard DPD and <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>μ</mi> <mo>∥</mo> </msub> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>6</mn> </mrow> </semantics> </math> </inline-formula> for bond repulsion.https://www.mdpi.com/2073-4360/11/3/541DPDpolymer brushpolymer ringscomputer simulationscaling theoryeffective interactions |