Toward room-temperature nanoscale skyrmions in ultrathin films

Abstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic fil...

Full description

Bibliographic Details
Main Authors: Anastasiia S. Varentcova, Stephan von Malottki, Maria N. Potkina, Grzegorz Kwiatkowski, Stefan Heinze, Pavel F. Bessarab
Format: Article
Language:English
Published: Nature Publishing Group 2020-12-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-020-00453-w
id doaj-64d3aa9107534faeac119487a4866580
record_format Article
spelling doaj-64d3aa9107534faeac119487a48665802020-12-20T12:14:02ZengNature Publishing Groupnpj Computational Materials2057-39602020-12-016111110.1038/s41524-020-00453-wToward room-temperature nanoscale skyrmions in ultrathin filmsAnastasiia S. Varentcova0Stephan von Malottki1Maria N. Potkina2Grzegorz Kwiatkowski3Stefan Heinze4Pavel F. Bessarab5ITMO UniversityInstitute of Theoretical Physics and Astrophysics, University of KielITMO UniversityScience Institute, University of IcelandInstitute of Theoretical Physics and Astrophysics, University of KielITMO UniversityAbstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic films can be enhanced by the concerted variation of magnetic interactions while keeping the skyrmion size unchanged. We predict film systems where the lifetime of sub-10 nm skyrmions can reach years at ambient conditions. The long lifetime of such small skyrmions is due to exceptionally large Arrhenius pre-exponential factor and the stabilizing effect of the energy barrier is insignificant at room temperature. A dramatic increase in the pre-exponential factor is achieved thanks to the softening of magnon modes of the skyrmion, thereby increasing the entropy of the skyrmion with respect to the transition state for collapse. Increasing the number of skyrmion deformation modes should be a guiding principle for the realization of nanoscale, room-temperature stable skyrmions.https://doi.org/10.1038/s41524-020-00453-w
collection DOAJ
language English
format Article
sources DOAJ
author Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
spellingShingle Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
Toward room-temperature nanoscale skyrmions in ultrathin films
npj Computational Materials
author_facet Anastasiia S. Varentcova
Stephan von Malottki
Maria N. Potkina
Grzegorz Kwiatkowski
Stefan Heinze
Pavel F. Bessarab
author_sort Anastasiia S. Varentcova
title Toward room-temperature nanoscale skyrmions in ultrathin films
title_short Toward room-temperature nanoscale skyrmions in ultrathin films
title_full Toward room-temperature nanoscale skyrmions in ultrathin films
title_fullStr Toward room-temperature nanoscale skyrmions in ultrathin films
title_full_unstemmed Toward room-temperature nanoscale skyrmions in ultrathin films
title_sort toward room-temperature nanoscale skyrmions in ultrathin films
publisher Nature Publishing Group
series npj Computational Materials
issn 2057-3960
publishDate 2020-12-01
description Abstract Breaking the dilemma between small size and room-temperature stability is a necessary prerequisite for skyrmion-based information technology. Here we demonstrate by means of rate theory and an atomistic spin Hamiltonian that the stability of isolated skyrmions in ultrathin ferromagnetic films can be enhanced by the concerted variation of magnetic interactions while keeping the skyrmion size unchanged. We predict film systems where the lifetime of sub-10 nm skyrmions can reach years at ambient conditions. The long lifetime of such small skyrmions is due to exceptionally large Arrhenius pre-exponential factor and the stabilizing effect of the energy barrier is insignificant at room temperature. A dramatic increase in the pre-exponential factor is achieved thanks to the softening of magnon modes of the skyrmion, thereby increasing the entropy of the skyrmion with respect to the transition state for collapse. Increasing the number of skyrmion deformation modes should be a guiding principle for the realization of nanoscale, room-temperature stable skyrmions.
url https://doi.org/10.1038/s41524-020-00453-w
work_keys_str_mv AT anastasiiasvarentcova towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT stephanvonmalottki towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT marianpotkina towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT grzegorzkwiatkowski towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT stefanheinze towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
AT pavelfbessarab towardroomtemperaturenanoscaleskyrmionsinultrathinfilms
_version_ 1724376939118985216