Influence of ionic strength on the rheological properties of hydroxypropylmethyl cellulose-sodium dodecylsulfate mixtures

Mixtures of polymers and surfactants are commonly found in a range of products of pharmaceutical, cosmetic, and food industry. Interaction between polymers and surfactants influences different properties of these products, e.g. stability, flow properties, phase behavior, etc. It is known fr...

Full description

Bibliographic Details
Main Authors: Katona Jaroslav M., Tomšik Alena, Bučko Sandra Đ., Petrović Lidija B.
Format: Article
Language:English
Published: Faculty of Technology, Novi Sad 2015-01-01
Series:Acta Periodica Technologica
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1450-7188/2015/1450-71881546229K.pdf
Description
Summary:Mixtures of polymers and surfactants are commonly found in a range of products of pharmaceutical, cosmetic, and food industry. Interaction between polymers and surfactants influences different properties of these products, e.g. stability, flow properties, phase behavior, etc. It is known from previous work that an interaction in binary mixtures of hydroxypropylmethyl cellulose (HPMC) and sodium dodecylsulfate (SDS) takes place when SDS concentration (CSDS.) is higher than the critical association concentration (CAC) and lower than the polymer saturation point (PSP). The interaction results in the formation of an HPMC-SDS complex. The objective of this work was to study the effect of the ionic strength on the HPMC-SDS complex formation by rheological investigation. The HPMC/SDS mixtures composed of 0.70 % wt. HPMC, and 0.00 % to 2.50 % wt. SDS were prepared in deionized water, 0.01M and 0.05M NaCl solution. It was found that an increase in the ionic strength influences the HPMC-SDS complex formation by increasing the zero shear viscosity of the mixtures in the interaction region (CAC<CSDS<PSP), while a decrease in the viscosity is observed for CSDS>PSP. The HPMC/SDS mixtures showed a shear thinning or a shear thickening flow properties depending on CSDS. The flow properties were influenced by the ionic strength of the mixtures.[Projekat Ministarstva nauke Republike Srbije, br. III46010]
ISSN:1450-7188
2406-095X