Summary: | Abstract We study the six-particle amplitude in planar N $$ \mathcal{N} $$ = 4 super Yang-Mills theory in the double scaling (DS) limit, the only nontrivial codimension-one boundary of its positive kinematic region. We construct the relevant function space, which is significantly constrained due to the extended Steinmann relations, up to weight 13 in coproduct form, and up to weight 12 as an explicit polylogarithmic representation. Expanding the latter in the collinear boundary of the DS limit, and using the Pentagon Operator Product Expansion, we compute the non-divergent coefficient of a certain component of the Next-to-Maximally-Helicity-Violating amplitude through weight 12 and eight loops. We also specialize our results to the overlapping origin limit, observing a general pattern for its leading divergences.
|