Hexagon bootstrap in the double scaling limit

Abstract We study the six-particle amplitude in planar N $$ \mathcal{N} $$ = 4 super Yang-Mills theory in the double scaling (DS) limit, the only nontrivial codimension-one boundary of its positive kinematic region. We construct the relevant function space, which is significantly constrained due to...

Full description

Bibliographic Details
Main Authors: Vsevolod Chestnov, Georgios Papathanasiou
Format: Article
Language:English
Published: SpringerOpen 2021-09-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP09(2021)007
Description
Summary:Abstract We study the six-particle amplitude in planar N $$ \mathcal{N} $$ = 4 super Yang-Mills theory in the double scaling (DS) limit, the only nontrivial codimension-one boundary of its positive kinematic region. We construct the relevant function space, which is significantly constrained due to the extended Steinmann relations, up to weight 13 in coproduct form, and up to weight 12 as an explicit polylogarithmic representation. Expanding the latter in the collinear boundary of the DS limit, and using the Pentagon Operator Product Expansion, we compute the non-divergent coefficient of a certain component of the Next-to-Maximally-Helicity-Violating amplitude through weight 12 and eight loops. We also specialize our results to the overlapping origin limit, observing a general pattern for its leading divergences.
ISSN:1029-8479