Functional identities on upper triangular matrix rings

Let R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.

Bibliographic Details
Main Authors: Yuan He, Chen Liangyun
Format: Article
Language:English
Published: De Gruyter 2020-03-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2020-0018
id doaj-64b0ccd13647463bb843b2377e32d53d
record_format Article
spelling doaj-64b0ccd13647463bb843b2377e32d53d2021-09-06T19:20:12ZengDe GruyterOpen Mathematics2391-54552020-03-0118118219310.1515/math-2020-0018math-2020-0018Functional identities on upper triangular matrix ringsYuan He0Chen Liangyun1Department of Mathematics, Jilin Normal University, Siping, 136000, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, ChinaLet R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.https://doi.org/10.1515/math-2020-0018functional identity(t; d)-free subsetupper triangular matrix ring16r6016s50
collection DOAJ
language English
format Article
sources DOAJ
author Yuan He
Chen Liangyun
spellingShingle Yuan He
Chen Liangyun
Functional identities on upper triangular matrix rings
Open Mathematics
functional identity
(t; d)-free subset
upper triangular matrix ring
16r60
16s50
author_facet Yuan He
Chen Liangyun
author_sort Yuan He
title Functional identities on upper triangular matrix rings
title_short Functional identities on upper triangular matrix rings
title_full Functional identities on upper triangular matrix rings
title_fullStr Functional identities on upper triangular matrix rings
title_full_unstemmed Functional identities on upper triangular matrix rings
title_sort functional identities on upper triangular matrix rings
publisher De Gruyter
series Open Mathematics
issn 2391-5455
publishDate 2020-03-01
description Let R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.
topic functional identity
(t; d)-free subset
upper triangular matrix ring
16r60
16s50
url https://doi.org/10.1515/math-2020-0018
work_keys_str_mv AT yuanhe functionalidentitiesonuppertriangularmatrixrings
AT chenliangyun functionalidentitiesonuppertriangularmatrixrings
_version_ 1717777070056013824