Functional identities on upper triangular matrix rings
Let R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2020-03-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2020-0018 |
id |
doaj-64b0ccd13647463bb843b2377e32d53d |
---|---|
record_format |
Article |
spelling |
doaj-64b0ccd13647463bb843b2377e32d53d2021-09-06T19:20:12ZengDe GruyterOpen Mathematics2391-54552020-03-0118118219310.1515/math-2020-0018math-2020-0018Functional identities on upper triangular matrix ringsYuan He0Chen Liangyun1Department of Mathematics, Jilin Normal University, Siping, 136000, ChinaSchool of Mathematics and Statistics, Northeast Normal University, Changchun, 130024, ChinaLet R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{} t_{ll}' \end{array} $ = t, l = 1, 2, …, n, for any n ∈ N.https://doi.org/10.1515/math-2020-0018functional identity(t; d)-free subsetupper triangular matrix ring16r6016s50 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yuan He Chen Liangyun |
spellingShingle |
Yuan He Chen Liangyun Functional identities on upper triangular matrix rings Open Mathematics functional identity (t; d)-free subset upper triangular matrix ring 16r60 16s50 |
author_facet |
Yuan He Chen Liangyun |
author_sort |
Yuan He |
title |
Functional identities on upper triangular matrix rings |
title_short |
Functional identities on upper triangular matrix rings |
title_full |
Functional identities on upper triangular matrix rings |
title_fullStr |
Functional identities on upper triangular matrix rings |
title_full_unstemmed |
Functional identities on upper triangular matrix rings |
title_sort |
functional identities on upper triangular matrix rings |
publisher |
De Gruyter |
series |
Open Mathematics |
issn |
2391-5455 |
publishDate |
2020-03-01 |
description |
Let R be a subset of a unital ring Q such that 0 ∈ R. Let us fix an element t ∈ Q. If R is a (t; d)-free subset of Q, then Tn(R) is a (t′; d)-free subset of Tn(Q), where t′ ∈ Tn(Q), tll′$\begin{array}{}
t_{ll}'
\end{array} $ = t, l = 1, 2, …, n, for any n ∈ N. |
topic |
functional identity (t; d)-free subset upper triangular matrix ring 16r60 16s50 |
url |
https://doi.org/10.1515/math-2020-0018 |
work_keys_str_mv |
AT yuanhe functionalidentitiesonuppertriangularmatrixrings AT chenliangyun functionalidentitiesonuppertriangularmatrixrings |
_version_ |
1717777070056013824 |