EFFECT OF GRAPHENE AND CARBON FIBER ON REPAIRING CRACK OF CONCRETE BY ELECTRODEPOSITION

For many years, researches have investigated concrete repair technologies including epoxy resin injection technology, bioremediation technology and self-healing technology. However, these repair methods have proven to be expensive and cumbersome to be carry out. A more recent technology electrochemi...

Full description

Bibliographic Details
Main Authors: Qingkuan Yang, Jinbang Wang, Yuan Lianwang, Zhou Zonghui
Format: Article
Language:English
Published: University of Chemistry and Technology, Prague 2019-07-01
Series:Ceramics-Silikáty
Subjects:
Online Access: http://www.ceramics-silikaty.cz/index.php?page=cs_detail_doi&id=1291
Description
Summary:For many years, researches have investigated concrete repair technologies including epoxy resin injection technology, bioremediation technology and self-healing technology. However, these repair methods have proven to be expensive and cumbersome to be carry out. A more recent technology electrochemical deposition, the focus of this paper emphases in a new way of healing concrete cracks that restores durability and mechanical strength of a concrete structure. Therefore, the emphasis of the research work reported here in is to prove the repair efficiency of the electrodeposition method by adding carbon fiber and graphene to the concrete. By analyzing the mass change of the concrete, total charge passed, crack width variation, ultrasonic waves, sediment composition and morphology, it was found that the cracks with width of 0.3-0.5mm in samples healed within 20 days. The repair efficiency of samples mixed with carbon fiber and graphene were better than specimens without carbon fiber and graphene. Moreover, the mass increase rate of a concrete samples mixed with carbon fiber and graphene was 10.15‰, which is twice the mass of conventional concrete. The results of SEM and X-ray diffraction analysis showed that the samples mixed with carbon fiber and graphene produced more ZnO and that had a continuous compact structure.
ISSN:0862-5468
1804-5847