On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.
CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2012-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3382138?pdf=render |
id |
doaj-649ad3c42fed4114a8ba280d7af8b0af |
---|---|
record_format |
Article |
spelling |
doaj-649ad3c42fed4114a8ba280d7af8b0af2020-11-25T02:32:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032012-01-0176e3955010.1371/journal.pone.0039550On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase.Patrick SchaubQiuju YuSandra GemmeckerPierre Poussin-CourmontagneJustine MailliotAlastair G McEwenSandro GhislaSalim Al-BabiliJean CavarelliPeter BeyerCRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC) liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40) hydrocarbon substrate.http://europepmc.org/articles/PMC3382138?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Patrick Schaub Qiuju Yu Sandra Gemmecker Pierre Poussin-Courmontagne Justine Mailliot Alastair G McEwen Sandro Ghisla Salim Al-Babili Jean Cavarelli Peter Beyer |
spellingShingle |
Patrick Schaub Qiuju Yu Sandra Gemmecker Pierre Poussin-Courmontagne Justine Mailliot Alastair G McEwen Sandro Ghisla Salim Al-Babili Jean Cavarelli Peter Beyer On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. PLoS ONE |
author_facet |
Patrick Schaub Qiuju Yu Sandra Gemmecker Pierre Poussin-Courmontagne Justine Mailliot Alastair G McEwen Sandro Ghisla Salim Al-Babili Jean Cavarelli Peter Beyer |
author_sort |
Patrick Schaub |
title |
On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. |
title_short |
On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. |
title_full |
On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. |
title_fullStr |
On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. |
title_full_unstemmed |
On the structure and function of the phytoene desaturase CRTI from Pantoea ananatis, a membrane-peripheral and FAD-dependent oxidase/isomerase. |
title_sort |
on the structure and function of the phytoene desaturase crti from pantoea ananatis, a membrane-peripheral and fad-dependent oxidase/isomerase. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2012-01-01 |
description |
CRTI-type phytoene desaturases prevailing in bacteria and fungi can form lycopene directly from phytoene while plants employ two distinct desaturases and two cis-tans isomerases for the same purpose. This property renders CRTI a valuable gene to engineer provitamin A-formation to help combat vitamin A malnutrition, such as with Golden Rice. To understand the biochemical processes involved, recombinant CRTI was produced and obtained in homogeneous form that shows high enzymatic activity with the lipophilic substrate phytoene contained in phosphatidyl-choline (PC) liposome membranes. The first crystal structure of apo-CRTI reveals that CRTI belongs to the flavoprotein superfamily comprising protoporphyrinogen IX oxidoreductase and monoamine oxidase. CRTI is a membrane-peripheral oxidoreductase which utilizes FAD as the sole redox-active cofactor. Oxygen, replaceable by quinones in its absence, is needed as the terminal electron acceptor. FAD, besides its catalytic role also displays a structural function by enabling the formation of enzymatically active CRTI membrane associates. Under anaerobic conditions the enzyme can act as a carotene cis-trans isomerase. In silico-docking experiments yielded information on substrate binding sites, potential catalytic residues and is in favor of single half-site recognition of the symmetrical C(40) hydrocarbon substrate. |
url |
http://europepmc.org/articles/PMC3382138?pdf=render |
work_keys_str_mv |
AT patrickschaub onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT qiujuyu onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT sandragemmecker onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT pierrepoussincourmontagne onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT justinemailliot onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT alastairgmcewen onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT sandroghisla onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT salimalbabili onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT jeancavarelli onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase AT peterbeyer onthestructureandfunctionofthephytoenedesaturasecrtifrompantoeaananatisamembraneperipheralandfaddependentoxidaseisomerase |
_version_ |
1724818008993431552 |