Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1,&#x...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2009-01-01
|
Series: | Journal of Inequalities and Applications |
Online Access: | http://dx.doi.org/10.1155/2009/718020 |
id |
doaj-6484b682950c4ea5a57616d6918f676b |
---|---|
record_format |
Article |
spelling |
doaj-6484b682950c4ea5a57616d6918f676b2020-11-25T01:04:44ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-01200910.1155/2009/718020Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)Huai-Xin CaoJi-Rong LvJ. M. RassiasWe discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1, Δf,g2, Δf,g3, and Δf,g4 are defined and it is proved that if ∥Δf,g1(x,y,z,w)∥ (resp., ∥Δf,g3(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if ∥Δf,g2(x,y,z,w)∥ (resp., ∥Δf,g4(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 derivation and g is a (resp., linear) module-X derivation. http://dx.doi.org/10.1155/2009/718020 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Huai-Xin Cao Ji-Rong Lv J. M. Rassias |
spellingShingle |
Huai-Xin Cao Ji-Rong Lv J. M. Rassias Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) Journal of Inequalities and Applications |
author_facet |
Huai-Xin Cao Ji-Rong Lv J. M. Rassias |
author_sort |
Huai-Xin Cao |
title |
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) |
title_short |
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) |
title_full |
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) |
title_fullStr |
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) |
title_full_unstemmed |
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I) |
title_sort |
superstability for generalized module left derivations and generalized module derivations on a banach module (i) |
publisher |
SpringerOpen |
series |
Journal of Inequalities and Applications |
issn |
1025-5834 1029-242X |
publishDate |
2009-01-01 |
description |
We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1, Δf,g2, Δf,g3, and Δf,g4 are defined and it is proved that if ∥Δf,g1(x,y,z,w)∥ (resp., ∥Δf,g3(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if ∥Δf,g2(x,y,z,w)∥ (resp., ∥Δf,g4(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 derivation and g is a (resp., linear) module-X derivation. |
url |
http://dx.doi.org/10.1155/2009/718020 |
work_keys_str_mv |
AT huaixincao superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei AT jironglv superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei AT jmrassias superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei |
_version_ |
1725196389270421504 |