Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)

We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1,&#x...

Full description

Bibliographic Details
Main Authors: Huai-Xin Cao, Ji-Rong Lv, J. M. Rassias
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Journal of Inequalities and Applications
Online Access:http://dx.doi.org/10.1155/2009/718020
id doaj-6484b682950c4ea5a57616d6918f676b
record_format Article
spelling doaj-6484b682950c4ea5a57616d6918f676b2020-11-25T01:04:44ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2009-01-01200910.1155/2009/718020Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)Huai-Xin CaoJi-Rong LvJ. M. RassiasWe discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1, Δf,g2, Δf,g3, and Δf,g4 are defined and it is proved that if ∥Δf,g1(x,y,z,w)∥ (resp., ∥Δf,g3(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if ∥Δf,g2(x,y,z,w)∥ (resp., ∥Δf,g4(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 derivation and g is a (resp., linear) module-X derivation. http://dx.doi.org/10.1155/2009/718020
collection DOAJ
language English
format Article
sources DOAJ
author Huai-Xin Cao
Ji-Rong Lv
J. M. Rassias
spellingShingle Huai-Xin Cao
Ji-Rong Lv
J. M. Rassias
Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
Journal of Inequalities and Applications
author_facet Huai-Xin Cao
Ji-Rong Lv
J. M. Rassias
author_sort Huai-Xin Cao
title Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
title_short Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
title_full Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
title_fullStr Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
title_full_unstemmed Superstability for Generalized Module Left Derivations and Generalized Module Derivations on a Banach Module (I)
title_sort superstability for generalized module left derivations and generalized module derivations on a banach module (i)
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1025-5834
1029-242X
publishDate 2009-01-01
description We discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module. Let 𝒜 be a Banach algebra and X a Banach 𝒜-module, f:X→X and g:𝒜→𝒜. The mappings Δf,g1, Δf,g2, Δf,g3, and Δf,g4 are defined and it is proved that if ∥Δf,g1(x,y,z,w)∥ (resp., ∥Δf,g3(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 left derivation and g is a (resp., linear) module-X left derivation. It is also shown that if ∥Δf,g2(x,y,z,w)∥ (resp., ∥Δf,g4(x,y,z,w,α,β)∥) is dominated by φ(x,y,z,w), then f is a generalized (resp., linear) module-𝒜 derivation and g is a (resp., linear) module-X derivation.
url http://dx.doi.org/10.1155/2009/718020
work_keys_str_mv AT huaixincao superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei
AT jironglv superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei
AT jmrassias superstabilityforgeneralizedmoduleleftderivationsandgeneralizedmodulederivationsonabanachmodulei
_version_ 1725196389270421504