Generation of an induced pluripotent stem cell line from a Chinese Han child with arrhythmia

CTNNA3, first reported in association with arrhythmogenic right ventricular cardiomyopathy in 2003, is an unique component of both desmosomes and adherens junctions. Using Sendaivirus-mediated reprogramming, we generated an induced pluripotent stem cell (iPSC) line from the peripheral blood mononucl...

Full description

Bibliographic Details
Main Authors: Cuilan Hou, Wei Liu, Lijian Xie, Junmin Zheng, Xiaonan Chen, Xiaomin Sun, Yongwei Zhang, Meng Xu, Yun Li, Tingting Xiao
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Stem Cell Research
Online Access:http://www.sciencedirect.com/science/article/pii/S1873506121000295
Description
Summary:CTNNA3, first reported in association with arrhythmogenic right ventricular cardiomyopathy in 2003, is an unique component of both desmosomes and adherens junctions. Using Sendaivirus-mediated reprogramming, we generated an induced pluripotent stem cell (iPSC) line from the peripheral blood mononuclear cells of a child with arrhythmia. The iPSCs exhibited stable amplification, expressed pluripotent markers, and differentiated spontaneously into three germ layers in vitro. Additionally, this iPSC line was found to maintain a normal karyotype and retain the pathogenic mutation in CTNNA3, facilitating a platform to study the disease mechanisms of arrhythmia and dysfunctions related to CTNNA3 mutations.
ISSN:1873-5061