New classes of rearrangement-invariant spaces appearing in extreme cases of weak interpolation

We study weak type interpolation for ultrasymmetric spaces L?,E i.e., having the norm ??(t)f*(t)?E˜, where ?(t) is any quasiconcave function and E˜ is arbitrary rearrangement-invariant space with respect to the measure dt/t. When spaces L?,E are not “too close” to the endpoint spaces of interpolatio...

Full description

Bibliographic Details
Main Authors: Evgeniy Pustylnik, Teresa Signes
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2006/242615
Description
Summary:We study weak type interpolation for ultrasymmetric spaces L?,E i.e., having the norm ??(t)f*(t)?E˜, where ?(t) is any quasiconcave function and E˜ is arbitrary rearrangement-invariant space with respect to the measure dt/t. When spaces L?,E are not “too close” to the endpoint spaces of interpolation (in the sense of Boyd), the optimal interpolation theorem was stated in [13]. The case of “too close” spaces was studied in [15] with results which are optimal, but only among ultrasymmetric spaces. In this paper we find better interpolation results, involving new types of rearrangement-invariant spaces, A?,b,E and B?,b,E, which are described and investigated in detail.
ISSN:0972-6802