Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology
Abstract Background Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Method...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-07-01
|
Series: | Plant Methods |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13007-019-0459-z |
id |
doaj-641b68f646c34883a5ddbe1d5671ce29 |
---|---|
record_format |
Article |
spelling |
doaj-641b68f646c34883a5ddbe1d5671ce292020-11-25T02:46:19ZengBMCPlant Methods1746-48112019-07-0115111210.1186/s13007-019-0459-zDesign of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiologyKaori Sakai0Florence Charlot1Thomas Le Saux2Sandrine Bonhomme3Fabien Nogué4Jean-Christophe Palauqui5Jacques Fattaccioli6PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRSINRA, Institut Jean-Pierre Bourgin, Saclay Plant SciencesPASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRSINRA, Institut Jean-Pierre Bourgin, Saclay Plant SciencesINRA, Institut Jean-Pierre Bourgin, Saclay Plant SciencesINRA, Institut Jean-Pierre Bourgin, Saclay Plant SciencesPASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRSAbstract Background Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Methods and differentiation protocols used in plant physiology and biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes. Results Herein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of Physcomitrella patens (P. patens) growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions. We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin. Conclusions We developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of P. patens development in a microfluidic environment. This setup allows imaging of P. patens development at high resolution and over long time periods.http://link.springer.com/article/10.1186/s13007-019-0459-zMicrofluidicsPhyscomitrella patensRegenerationDevelopmentDifferentiationProtoplasts |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kaori Sakai Florence Charlot Thomas Le Saux Sandrine Bonhomme Fabien Nogué Jean-Christophe Palauqui Jacques Fattaccioli |
spellingShingle |
Kaori Sakai Florence Charlot Thomas Le Saux Sandrine Bonhomme Fabien Nogué Jean-Christophe Palauqui Jacques Fattaccioli Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology Plant Methods Microfluidics Physcomitrella patens Regeneration Development Differentiation Protoplasts |
author_facet |
Kaori Sakai Florence Charlot Thomas Le Saux Sandrine Bonhomme Fabien Nogué Jean-Christophe Palauqui Jacques Fattaccioli |
author_sort |
Kaori Sakai |
title |
Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
title_short |
Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
title_full |
Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
title_fullStr |
Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
title_full_unstemmed |
Design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
title_sort |
design of a comprehensive microfluidic and microscopic toolbox for the ultra-wide spatio-temporal study of plant protoplasts development and physiology |
publisher |
BMC |
series |
Plant Methods |
issn |
1746-4811 |
publishDate |
2019-07-01 |
description |
Abstract Background Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Methods and differentiation protocols used in plant physiology and biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes. Results Herein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of Physcomitrella patens (P. patens) growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions. We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin. Conclusions We developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of P. patens development in a microfluidic environment. This setup allows imaging of P. patens development at high resolution and over long time periods. |
topic |
Microfluidics Physcomitrella patens Regeneration Development Differentiation Protoplasts |
url |
http://link.springer.com/article/10.1186/s13007-019-0459-z |
work_keys_str_mv |
AT kaorisakai designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT florencecharlot designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT thomaslesaux designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT sandrinebonhomme designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT fabiennogue designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT jeanchristophepalauqui designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology AT jacquesfattaccioli designofacomprehensivemicrofluidicandmicroscopictoolboxfortheultrawidespatiotemporalstudyofplantprotoplastsdevelopmentandphysiology |
_version_ |
1724759176858566656 |