Steady-State Conduction Current Performance for Multilayer Polyimide/SiO<sub>2</sub> Films

The steady-state electrical conduction current for single and multilayer polyimide (PI) nanocomposite films was observed at the low and high electric field for different temperatures. Experimental data were fitted to conduction models to investigate the dominant conduction mechanism in these films....

Full description

Bibliographic Details
Main Authors: Muhammad Shoaib Bhutta, Shakeel Akram, Pengfei Meng, Jerome Castellon, Serge Agnel, Hui Li, Yecai Guo, Ghulam Rasool, Shahid Hussain, Muhammad Tariq Nazir
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/4/640
Description
Summary:The steady-state electrical conduction current for single and multilayer polyimide (PI) nanocomposite films was observed at the low and high electric field for different temperatures. Experimental data were fitted to conduction models to investigate the dominant conduction mechanism in these films. In most films, space charge limited current (SCLC) and Poole–Frenkel current displayed dominant conduction. At a high electric field, the ohmic conduction was replaced by current–voltage dependency. Higher conduction current was observed for nanocomposite films at a lower temperature, but it declined at a higher temperature. PI nanocomposite multilayer films showed a huge reduction in the conduction current at higher electric fields and temperatures. The conclusions derived in this study would provide the empirical basis and early breakdown phenomenon explanation when performing dielectric strength and partial discharge measurements of PI-based nanocomposite insulation systems of electric motors.
ISSN:2073-4360