Smart Manufacturing Real-Time Analysis Based on Blockchain and Machine Learning Approaches

The growth of data production in the manufacturing industry causes the monitoring system to become an essential concept for decision-making and management. The recent powerful technologies, such as the Internet of Things (IoT), which is sensor-based, can process suitable ways to monitor the manufact...

Full description

Bibliographic Details
Main Authors: Zeinab Shahbazi, Yung-Cheol Byun
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/8/3535
Description
Summary:The growth of data production in the manufacturing industry causes the monitoring system to become an essential concept for decision-making and management. The recent powerful technologies, such as the Internet of Things (IoT), which is sensor-based, can process suitable ways to monitor the manufacturing process. The proposed system in this research is the integration of IoT, Machine Learning (ML), and for monitoring the manufacturing system. The environmental data are collected from IoT sensors, including temperature, humidity, gyroscope, and accelerometer. The data types generated from sensors are unstructured, massive, and real-time. Various big data techniques are applied to further process of the data. The hybrid prediction model used in this system uses the Random Forest classification technique to remove the sensor data outliers and donate fault detection through the manufacturing system. The proposed system was evaluated for automotive manufacturing in South Korea. The technique applied in this system is used to secure and improve the data trust to avoid real data changes with fake data and system transactions. The results section provides the effectiveness of the proposed system compared to other approaches. Moreover, the hybrid prediction model provides an acceptable fault prediction than other inputs. The expected process from the proposed method is to enhance decision-making and reduce the faults through the manufacturing process.
ISSN:2076-3417