Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes

While cuprous oxide is a promising solar-to-fuel conversion material, photoelectrochemical devices substantially underperform. Here, the authors use femtosecond time-resolved two-photon photoemission spectroscopy to correlate photoexcited electron energetics and dynamics with performance losses.

Bibliographic Details
Main Authors: Mario Borgwardt, Stefan T. Omelchenko, Marco Favaro, Paul Plate, Christian Höhn, Daniel Abou-Ras, Klaus Schwarzburg, Roel van de Krol, Harry A. Atwater, Nathan S. Lewis, Rainer Eichberger, Dennis Friedrich
Format: Article
Language:English
Published: Nature Publishing Group 2019-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-10143-x
id doaj-63da452539ec41218ed9e6159992e34e
record_format Article
spelling doaj-63da452539ec41218ed9e6159992e34e2021-05-11T11:42:17ZengNature Publishing GroupNature Communications2041-17232019-05-011011710.1038/s41467-019-10143-xFemtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodesMario Borgwardt0Stefan T. Omelchenko1Marco Favaro2Paul Plate3Christian Höhn4Daniel Abou-Ras5Klaus Schwarzburg6Roel van de Krol7Harry A. Atwater8Nathan S. Lewis9Rainer Eichberger10Dennis Friedrich11Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHDivision of Engineering and Applied Sciences, California Institute of TechnologyInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHDepartment Nanoscale Structures and Microscopic Analysis, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHDepartment Nanoscale Structures and Microscopic Analysis, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHDivision of Engineering and Applied Sciences, California Institute of TechnologyThe Joint Center for Artificial Photosynthesis, California Institute of TechnologyInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHInstitute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbHWhile cuprous oxide is a promising solar-to-fuel conversion material, photoelectrochemical devices substantially underperform. Here, the authors use femtosecond time-resolved two-photon photoemission spectroscopy to correlate photoexcited electron energetics and dynamics with performance losses.https://doi.org/10.1038/s41467-019-10143-x
collection DOAJ
language English
format Article
sources DOAJ
author Mario Borgwardt
Stefan T. Omelchenko
Marco Favaro
Paul Plate
Christian Höhn
Daniel Abou-Ras
Klaus Schwarzburg
Roel van de Krol
Harry A. Atwater
Nathan S. Lewis
Rainer Eichberger
Dennis Friedrich
spellingShingle Mario Borgwardt
Stefan T. Omelchenko
Marco Favaro
Paul Plate
Christian Höhn
Daniel Abou-Ras
Klaus Schwarzburg
Roel van de Krol
Harry A. Atwater
Nathan S. Lewis
Rainer Eichberger
Dennis Friedrich
Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
Nature Communications
author_facet Mario Borgwardt
Stefan T. Omelchenko
Marco Favaro
Paul Plate
Christian Höhn
Daniel Abou-Ras
Klaus Schwarzburg
Roel van de Krol
Harry A. Atwater
Nathan S. Lewis
Rainer Eichberger
Dennis Friedrich
author_sort Mario Borgwardt
title Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
title_short Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
title_full Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
title_fullStr Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
title_full_unstemmed Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
title_sort femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in cu2o photoelectrodes
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2019-05-01
description While cuprous oxide is a promising solar-to-fuel conversion material, photoelectrochemical devices substantially underperform. Here, the authors use femtosecond time-resolved two-photon photoemission spectroscopy to correlate photoexcited electron energetics and dynamics with performance losses.
url https://doi.org/10.1038/s41467-019-10143-x
work_keys_str_mv AT marioborgwardt femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT stefantomelchenko femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT marcofavaro femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT paulplate femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT christianhohn femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT danielabouras femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT klausschwarzburg femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT roelvandekrol femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT harryaatwater femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT nathanslewis femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT rainereichberger femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
AT dennisfriedrich femtosecondtimeresolvedtwophotonphotoemissionstudiesofultrafastcarrierrelaxationincu2ophotoelectrodes
_version_ 1721446066204704768