Foreign Object Detection by Sub-Terahertz Quasi-Bessel Beam Imaging

Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quas...

Full description

Bibliographic Details
Main Authors: Hyang Sook Chun, Kyung Hyun Park, Sung-Wook Choi, Gyeongsik Ok
Format: Article
Language:English
Published: MDPI AG 2012-12-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/13/1/71
Description
Summary:Food quality monitoring, particularly foreign object detection, has recently become a critical issue for the food industry. In contrast to X-ray imaging, terahertz imaging can provide a safe and ionizing-radiation-free nondestructive inspection method for foreign object sensing. In this work, a quasi-Bessel beam (QBB) known to be nondiffracting was generated by a conical dielectric lens to detect foreign objects in food samples. Using numerical evaluation via the finite-difference time-domain (FDTD) method, the beam profiles of a QBB were evaluated and compared with the results obtained via analytical calculation and experimental characterization (knife edge method, point scanning method). The FDTD method enables a more precise estimation of the beam profile. Foreign objects in food samples, namely crickets, were then detected with the QBB, which had a deep focus and a high spatial resolution at 210 GHz. Transmitted images using a Gaussian beam obtained with a conventional lens were compared in the sub-terahertz frequency experimentally with those using a QBB generated using an axicon.
ISSN:1424-8220