Deep Learning Based Successive Interference Cancellation Scheme in Nonorthogonal Multiple Access Downlink Network

In this paper, a deep learning-based successive interference cancellation (SIC) scheme for use in nonorthogonal multiple access (NOMA) communication systems is investigated. NOMA has become a notable technique in the field of mobile wireless communication because of its capacity to overcome orthogon...

Full description

Bibliographic Details
Main Authors: Isaac Sim, Young Ghyu Sun, Donggu Lee, Soo Hyun Kim, Jiyoung Lee, Jae-Hyun Kim, Yoan Shin, Jin Young Kim
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/23/6237
Description
Summary:In this paper, a deep learning-based successive interference cancellation (SIC) scheme for use in nonorthogonal multiple access (NOMA) communication systems is investigated. NOMA has become a notable technique in the field of mobile wireless communication because of its capacity to overcome orthogonality, unlike a conventional orthogonal frequency division multiple access (OFDMA) communication system. In NOMA communication systems, SIC is one of the decoding schemes applied at receivers for downlink NOMA transmissions. In this paper, a convolutional neural network (CNN)-based SIC scheme is proposed to improve performance of the single base station and multiuser NOMA scheme. In contrast to existing SIC schemes, the proposed CNN-based SIC scheme can effectively mitigate losses resulting from imperfections of the SIC. The simulation results indicate that the CNN-based SIC method can successfully relieve conventional SIC impairments and achieve good detection performance. Consequently, a CNN-based SIC scheme can be considered as a potential technique for use in NOMA detection schemes.
ISSN:1996-1073