A New Design Optimization Method for Permanent Magnet Synchronous Linear Motors

This study focused on the design optimization of permanent magnet synchronous linear motors (PMSLM) that are applied in microsecond laser cutting machines. A new design optimization method was introduced to enhance PMSLM performances in terms of motor thrust, thrust ripple, and inductive electromoti...

Full description

Bibliographic Details
Main Authors: Juncai Song, Fei Dong, Jiwen Zhao, Siliang Lu, Le Li, Zhenbao Pan
Format: Article
Language:English
Published: MDPI AG 2016-11-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/9/12/992
Description
Summary:This study focused on the design optimization of permanent magnet synchronous linear motors (PMSLM) that are applied in microsecond laser cutting machines. A new design optimization method was introduced to enhance PMSLM performances in terms of motor thrust, thrust ripple, and inductive electromotive force (EMF). Based on accurate 3D finite element analysis (3D-FEA), a multiple support vector machine (multi-SVM) was proposed to build a non-parametric quick calculation model by mapping the relation between multivariate structure parameters and multivariate operation performances. The gravity center neighborhood algorithm (GCNA) was also applied to search the global optimal combination of the structure parameters by locating the gravity center of the multi-SVM model. The superiority and validity of this method are verified by experiments.
ISSN:1996-1073