Balancing Loads among MEC Servers by Task Redirection to Enhance the Resource Efficiency of MEC Systems

To improve the resource efficiency of multi-access edge computing (MEC) systems, it is important to distribute the imposed workload evenly among MEC servers (MECSs). To address this issue, we propose a task redirection method to balance loads among MECSs in a distributed manner. In conventional meth...

Full description

Bibliographic Details
Main Authors: Jaesung Park, Yujin Lim
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/16/7589
Description
Summary:To improve the resource efficiency of multi-access edge computing (MEC) systems, it is important to distribute the imposed workload evenly among MEC servers (MECSs). To address this issue, we propose a task redirection method to balance loads among MECSs in a distributed manner. In conventional methods, a congested MECS selects only one MECS to which it redirects tasks. By contrast, the proposed method enables a congested MECS to distribute its tasks to a set of MECSs, the loads of which are lower than that of the congested MECS by determining the number of tasks that it redirects to each selected MECS. We prove that our task redirection method drives a MEC system to a state where the resulting MECS load vector is lexicographically minimal. Through extensive simulation studies, we show that compared with the conventional methods, the proposed method can achieve the smallest load difference between the load of the MECS, the load of which is the highest, and that of the MECS, the load of which is the smallest. By lexicographically minimizing the MECS load vector, the proposed method decreases the average task blocking rate when the task offload rate is high. In addition, we show that the proposed method outperforms the conventional methods in terms of the number of tasks, the delay requirements of which are not satisfied.
ISSN:2076-3417