Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters

DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair process...

Full description

Bibliographic Details
Main Authors: Andreas Hofmann, Matthias Krufczik, Dieter W. Heermann, Michael Hausmann
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/19/8/2263
id doaj-63951df407d74449800cc64dd235e343
record_format Article
spelling doaj-63951df407d74449800cc64dd235e3432020-11-24T21:06:13ZengMDPI AGInternational Journal of Molecular Sciences1422-00672018-08-01198226310.3390/ijms19082263ijms19082263Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/ClustersAndreas Hofmann0Matthias Krufczik1Dieter W. Heermann2Michael Hausmann3Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, GermanyKirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyInstitute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, GermanyKirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, GermanyDNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.http://www.mdpi.com/1422-0067/19/8/2263single-molecule localization microscopyDNA double strand breaksγH2AX formationpersistent homologytopologysimilarity measurefoci/cluster classification relative to heterochromatin
collection DOAJ
language English
format Article
sources DOAJ
author Andreas Hofmann
Matthias Krufczik
Dieter W. Heermann
Michael Hausmann
spellingShingle Andreas Hofmann
Matthias Krufczik
Dieter W. Heermann
Michael Hausmann
Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
International Journal of Molecular Sciences
single-molecule localization microscopy
DNA double strand breaks
γH2AX formation
persistent homology
topology
similarity measure
foci/cluster classification relative to heterochromatin
author_facet Andreas Hofmann
Matthias Krufczik
Dieter W. Heermann
Michael Hausmann
author_sort Andreas Hofmann
title Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
title_short Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
title_full Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
title_fullStr Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
title_full_unstemmed Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of γH2AX Foci/Clusters
title_sort using persistent homology as a new approach for super-resolution localization microscopy data analysis and classification of γh2ax foci/clusters
publisher MDPI AG
series International Journal of Molecular Sciences
issn 1422-0067
publishDate 2018-08-01
description DNA double strand breaks (DSB) are the most severe damages in chromatin induced by ionizing radiation. In response to such environmentally determined stress situations, cells have developed repair mechanisms. Although many investigations have contributed to a detailed understanding of repair processes, e.g., homologous recombination repair or non-homologous end-joining, the question is not sufficiently answered, how a cell decides to apply a certain repair process at a certain damage site, since all different repair pathways could simultaneously occur in the same cell nucleus. One of the first processes after DSB induction is phosphorylation of the histone variant H2AX to γH2AX in the given surroundings of the damaged locus. Since the spatial organization of chromatin is not random, it may be conclusive that the spatial organization of γH2AX foci is also not random, and rather, contributes to accessibility of special repair proteins to the damaged site, and thus, to the following repair pathway at this given site. The aim of this article is to demonstrate a new approach to analyze repair foci by their topology in order to obtain a cell independent method of categorization. During the last decade, novel super-resolution fluorescence light microscopic techniques have enabled new insights into genome structure and spatial organization on the nano-scale in the order of 10 nm. One of these techniques is single molecule localization microscopy (SMLM) with which the spatial coordinates of single fluorescence molecules can precisely be determined and density and distance distributions can be calculated. This method is an appropriate tool to quantify complex changes of chromatin and to describe repair foci on the single molecule level. Based on the pointillist information obtained by SMLM from specifically labeled heterochromatin and γH2AX foci reflecting the chromatin morphology and repair foci topology, we have developed a new analytical methodology of foci or foci cluster characterization, respectively, by means of persistence homology. This method allows, for the first time, a cell independent comparison of two point distributions (here the point distributions of two γH2AX clusters) with each other of a selected ensample and to give a mathematical measure of their similarity. In order to demonstrate the feasibility of this approach, cells were irradiated by low LET (linear energy transfer) radiation with different doses and the heterochromatin and γH2AX foci were fluorescently labeled by antibodies for SMLM. By means of our new analysis method, we were able to show that the topology of clusters of γH2AX foci can be categorized depending on the distance to heterochromatin. This method opens up new possibilities to categorize spatial organization of point patterns by parameterization of topological similarity.
topic single-molecule localization microscopy
DNA double strand breaks
γH2AX formation
persistent homology
topology
similarity measure
foci/cluster classification relative to heterochromatin
url http://www.mdpi.com/1422-0067/19/8/2263
work_keys_str_mv AT andreashofmann usingpersistenthomologyasanewapproachforsuperresolutionlocalizationmicroscopydataanalysisandclassificationofgh2axfociclusters
AT matthiaskrufczik usingpersistenthomologyasanewapproachforsuperresolutionlocalizationmicroscopydataanalysisandclassificationofgh2axfociclusters
AT dieterwheermann usingpersistenthomologyasanewapproachforsuperresolutionlocalizationmicroscopydataanalysisandclassificationofgh2axfociclusters
AT michaelhausmann usingpersistenthomologyasanewapproachforsuperresolutionlocalizationmicroscopydataanalysisandclassificationofgh2axfociclusters
_version_ 1716766294829694976