Identification system for the technical condition of gas turbine engines of aircraft

In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of...

Full description

Bibliographic Details
Main Authors: Arif Pashayev, Djakhangir Askerov, Ramiz Sadiqov, Parviz Abdullayev
Format: Article
Language:English
Published: Vilnius Gediminas Technical University 2008-12-01
Series:Aviation
Subjects:
Online Access:https://journals.vgtu.lt/index.php/Aviation/article/view/6749
id doaj-633b3f1d23974c8eae481ac6744e9c00
record_format Article
spelling doaj-633b3f1d23974c8eae481ac6744e9c002021-07-02T04:38:18ZengVilnius Gediminas Technical UniversityAviation1648-77881822-41802008-12-0112410.3846/1648-7788.2008.12.101-112Identification system for the technical condition of gas turbine engines of aircraftArif Pashayev0Djakhangir Askerov1Ramiz Sadiqov2Parviz Abdullayev3Azerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th km In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines. Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made. Santrauka Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė. First Published Online: 14 Oct 2010 Reikšminiai žodžiai: aviacinis dujų turbininis variklis, netiksli logika ir neuroniniai tinklai, netiksli statistika, netikslus daugialypės koreliacijos koeficientas. https://journals.vgtu.lt/index.php/Aviation/article/view/6749aviation gas turbine enginefuzzy logic and newral networksfuzzy statisticsfuzzy coefficient of multiple correlation
collection DOAJ
language English
format Article
sources DOAJ
author Arif Pashayev
Djakhangir Askerov
Ramiz Sadiqov
Parviz Abdullayev
spellingShingle Arif Pashayev
Djakhangir Askerov
Ramiz Sadiqov
Parviz Abdullayev
Identification system for the technical condition of gas turbine engines of aircraft
Aviation
aviation gas turbine engine
fuzzy logic and newral networks
fuzzy statistics
fuzzy coefficient of multiple correlation
author_facet Arif Pashayev
Djakhangir Askerov
Ramiz Sadiqov
Parviz Abdullayev
author_sort Arif Pashayev
title Identification system for the technical condition of gas turbine engines of aircraft
title_short Identification system for the technical condition of gas turbine engines of aircraft
title_full Identification system for the technical condition of gas turbine engines of aircraft
title_fullStr Identification system for the technical condition of gas turbine engines of aircraft
title_full_unstemmed Identification system for the technical condition of gas turbine engines of aircraft
title_sort identification system for the technical condition of gas turbine engines of aircraft
publisher Vilnius Gediminas Technical University
series Aviation
issn 1648-7788
1822-4180
publishDate 2008-12-01
description In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines. Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made. Santrauka Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė. First Published Online: 14 Oct 2010 Reikšminiai žodžiai: aviacinis dujų turbininis variklis, netiksli logika ir neuroniniai tinklai, netiksli statistika, netikslus daugialypės koreliacijos koeficientas.
topic aviation gas turbine engine
fuzzy logic and newral networks
fuzzy statistics
fuzzy coefficient of multiple correlation
url https://journals.vgtu.lt/index.php/Aviation/article/view/6749
work_keys_str_mv AT arifpashayev identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft
AT djakhangiraskerov identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft
AT ramizsadiqov identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft
AT parvizabdullayev identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft
_version_ 1721339699052675072