Identification system for the technical condition of gas turbine engines of aircraft
In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Vilnius Gediminas Technical University
2008-12-01
|
Series: | Aviation |
Subjects: | |
Online Access: | https://journals.vgtu.lt/index.php/Aviation/article/view/6749 |
id |
doaj-633b3f1d23974c8eae481ac6744e9c00 |
---|---|
record_format |
Article |
spelling |
doaj-633b3f1d23974c8eae481ac6744e9c002021-07-02T04:38:18ZengVilnius Gediminas Technical UniversityAviation1648-77881822-41802008-12-0112410.3846/1648-7788.2008.12.101-112Identification system for the technical condition of gas turbine engines of aircraftArif Pashayev0Djakhangir Askerov1Ramiz Sadiqov2Parviz Abdullayev3Azerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th kmAzerbaijan National Academy of Aviation, AZ1045, Azerbaijan, Baku, Bina, 25th km In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient. Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines. Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models. At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)). The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made. Santrauka Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė. First Published Online: 14 Oct 2010 Reikšminiai žodžiai: aviacinis dujų turbininis variklis, netiksli logika ir neuroniniai tinklai, netiksli statistika, netikslus daugialypės koreliacijos koeficientas. https://journals.vgtu.lt/index.php/Aviation/article/view/6749aviation gas turbine enginefuzzy logic and newral networksfuzzy statisticsfuzzy coefficient of multiple correlation |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Arif Pashayev Djakhangir Askerov Ramiz Sadiqov Parviz Abdullayev |
spellingShingle |
Arif Pashayev Djakhangir Askerov Ramiz Sadiqov Parviz Abdullayev Identification system for the technical condition of gas turbine engines of aircraft Aviation aviation gas turbine engine fuzzy logic and newral networks fuzzy statistics fuzzy coefficient of multiple correlation |
author_facet |
Arif Pashayev Djakhangir Askerov Ramiz Sadiqov Parviz Abdullayev |
author_sort |
Arif Pashayev |
title |
Identification system for the technical condition of gas turbine engines of aircraft |
title_short |
Identification system for the technical condition of gas turbine engines of aircraft |
title_full |
Identification system for the technical condition of gas turbine engines of aircraft |
title_fullStr |
Identification system for the technical condition of gas turbine engines of aircraft |
title_full_unstemmed |
Identification system for the technical condition of gas turbine engines of aircraft |
title_sort |
identification system for the technical condition of gas turbine engines of aircraft |
publisher |
Vilnius Gediminas Technical University |
series |
Aviation |
issn |
1648-7788 1822-4180 |
publishDate |
2008-12-01 |
description |
In this paper, it is shown that the use of probability‐statistic methods, especially at the early stage of diagnosing the technical condition of aviation gas turbine engines (GTE) when the flight information has fuzzy and limitation and uncertainty properties, is unfounded. Hence the efficiency of the use of Soft Computing methods‐fuzzy logic and neural networks at these diagnostic stages is considered. Training with high accuracy of fuzzy multiple linear and non‐linear models (fuzzy regression equations) which received on the statistical fuzzy data basis is made. Thus, for to make a more adequate model of the technical condition of GTE, the dynamics changes of skewness and kurtosis coefficients are analysed. Research of skewness and kurtasis coefficients shows, that the statistical distributions of the work parameters of GTE have a fuzzy character. Hence, consideration of fuzzy skewness and kurtosis coefficients is expedient.
Investigation of the basic characteristics of the changes in the dynamics of the work parameters of GTE allows to draw the conclusion that it is necessary to use fuzzy statistical analysis during the preliminary identification of the technical condition of engines.
Research of changes in the values of correlation coefficients also demonstrates their fuzzy character. Therefore for models choice the application of the Fuzzy Correlation Analysis results is offered. The fuzzy multiple correlation coefficient of fuzzy multiple regression is considered for checking the adequacy of models.
At the information sufficiency is offered to use recurrent algorithm of aviation GTE technical condition identification (hard computing technology is used) on measurements of input and output parameters of the multiple linear and nonlinear generalised models at presence of noise measured (the new recursive Least Squares Method (LSM)).
The system that is developed to monitor the condition of GTE provides stage‐by‐stage estimation of the technical condition of an engine. As an application of this technique, an estimation of the new operating aviation engine temperature condition was made.
Santrauka
Straipsnyje atskleidžiamas tikimybinio-statistinio metodo nepagrįstumas diagnozuojant dujų turbininius variklius, kai informacija yra netiksli, ribota ir neapibrėžta. Parodytas technologijos Soft Computing taikymo efektyvumas. Taikant netikslios statistikos, netikslios logikos ir neuroninių tinklų tikslius metodus dujų turbininių variklių diagnozavimui atliekamas daugiamačių tiesinių ir netiesinių modelių (regresijos lygčių), gautų iš netikslių statistinių duomenų, apmokymas. Taikant aprašytą metodą buvo atlikta pradėto eksploatuoti turbininio variklio šiluminės būsenos analizė.
First Published Online: 14 Oct 2010
Reikšminiai žodžiai: aviacinis dujų turbininis variklis, netiksli logika ir neuroniniai tinklai, netiksli statistika, netikslus daugialypės koreliacijos koeficientas.
|
topic |
aviation gas turbine engine fuzzy logic and newral networks fuzzy statistics fuzzy coefficient of multiple correlation |
url |
https://journals.vgtu.lt/index.php/Aviation/article/view/6749 |
work_keys_str_mv |
AT arifpashayev identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft AT djakhangiraskerov identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft AT ramizsadiqov identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft AT parvizabdullayev identificationsystemforthetechnicalconditionofgasturbineenginesofaircraft |
_version_ |
1721339699052675072 |