On generalized characteristics of smoothness of functions and on average $\nu$-widths in the space $L_2(\mathbb{R})$
Estimates above and estimates below have been obtained for Kolmogorov, linear and Bernshtein average $\nu$-widths on the classes of functions $W^r (\omega^w, \Psi)$, where $r \in \mathbb{N}$, $\omega^w(f)$ is the generalized characteristic of smoothness of a function $f \in L_2(\mathbb{R})$, $\Psi$...
Main Authors: | S.B. Vakarchuk, M.B. Vakarchuk |
---|---|
Format: | Article |
Language: | English |
Published: |
Oles Honchar Dnipro National University
2019-07-01
|
Series: | Researches in Mathematics |
Subjects: | |
Online Access: | https://vestnmath.dnu.dp.ua/index.php/rim/article/view/109 |
Similar Items
-
О средних $\nu$-поперечниках некоторых классов функций в пространстве $L_2(\mathbb{R})$
by: S.B. Vakarchuk, et al.
Published: (2017-06-01) -
Точные неравенства типа Джексона в весовом пространстве $L_{2;\rho}({\mathbb{R}}^2)$
by: S.B. Vakarchuk, et al.
Published: (2014-08-01) -
On the Approximation of Periodic Functions in L2 and the Values of the Widths of Certain Classes of Functions
by: K. Tukhliev
Published: (2015-02-01) -
The Exact Inequalities of Jackson–Stechkin Type and the Width Values for Some Classes of Functions in L₂ Space
by: M. R. Langarshoev
Published: (2013-10-01) -
Using Nonlinear Modeling to Predict Peak Discharge and Average Breach Width from a Breached Embankment
by: Rasoul Azimi, et al.
Published: (2017-10-01)