Concrete Cracks Detection Using Convolutional NeuralNetwork Based on Transfer Learning
Crack plays a critical role in the field of evaluating the quality of concrete structures, which affects the safety, applicability, and durability of the structure. Due to its excellent performance in image processing, the convolutional neural network is becoming the mainstream choice to replace man...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2020/7240129 |
Summary: | Crack plays a critical role in the field of evaluating the quality of concrete structures, which affects the safety, applicability, and durability of the structure. Due to its excellent performance in image processing, the convolutional neural network is becoming the mainstream choice to replace manual crack detection. In this paper, we improve the EfficientNetB0 to realize the detection of concrete surface cracks using the transfer learning method. The model is designed by neural architecture search technology. The weights are pretrained on the ImageNet. Supervised learning uses Adam optimizer to update network parameters. In the testing process, crack images from different locations were used to further test the generalization capability of the model. By comparing the detection results with the MobileNetV2, DenseNet201, and InceptionV3 models, the results show that our model greatly reduces the number of parameters while achieving high accuracy (0.9911) and has good generalization capability. Our model is an efficient detection model, which provides a new option for crack detection in areas with limited computing resources. |
---|---|
ISSN: | 1024-123X 1563-5147 |