Spectrum of hypokalemic paralysis from a tertiary care center in India

Hypokalemic paralysis is an important and reversible cause of acute flaccid paralysis. The treating physician faces unique diagnostic and therapeutic challenges. We did a prospective study and included all patients with acute flaccid weakness and documented serum potassium of <3.5 mEq/L during th...

Full description

Bibliographic Details
Main Authors: G Chandramohan, T Dineshkumar, R Arul, M Seenivasan, J Dhanapriya, R Sakthirajan, T Balasubramaniyan, N Gopalakrishnan1
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2018-01-01
Series:Indian Journal of Nephrology
Subjects:
Online Access:http://www.indianjnephrol.org/article.asp?issn=0971-4065;year=2018;volume=28;issue=5;spage=365;epage=369;aulast=Chandramohan
Description
Summary:Hypokalemic paralysis is an important and reversible cause of acute flaccid paralysis. The treating physician faces unique diagnostic and therapeutic challenges. We did a prospective study and included all patients with acute flaccid weakness and documented serum potassium of <3.5 mEq/L during the period between January 2009 and August 2015. We studied the incidence, etiology, clinical profile, and acid–base disturbances in patients presenting with hypokalemic paralysis and analyzed the significance of periodic and non-periodic forms of hypokalemic paralysis on patient's outcome. Two hundred and six patients were studied with a mean follow-up of 3.6 ± 1.2 years. Mean age was 37.61 ± 2.2 years (range 18–50 years). Males were predominant (M:F ratio 2.1:1). The nonperiodic form of hypokalemic paralysis was the most common (61%). Eighty-one (39%) patients had metabolic acidosis, 78 (38%) had normal acid–base status, and 47 (23%) patients had metabolic alkalosis. The most common secondary cause was distal renal tubular acidosis (RTA) (n = 75, 36%), followed by Gitelman syndrome (n = 39, 18%), thyrotoxic paralysis (n = 8, 4%), hyperaldosteronism (n = 7, 3%), and proximal RTA (n = 6, 4%). Patients with non-periodic paralysis had more urinary loss (40.1 vs. 12.2 mmol, P = 0.04), more requirement of potassium replacement (120 vs. 48 mmol, P = 0.05), and longer recovery time of weakness (48.1 vs. 16.5 h, P = 0.05) than patients with periodic paralysis. Non-periodic form of hypokalemic paralysis was the most common variant in our study. Patients with periodic paralysis had significant incidence of rebound hyperkalemia.
ISSN:0971-4065
1998-3662