Experimental study of the aerosol impact on fog microphysics

<p>Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory in a suburb of Paris. In order to document their properties, in situ microphysical measur...

Full description

Bibliographic Details
Main Authors: M. Mazoyer, F. Burnet, C. Denjean, G. C. Roberts, M. Haeffelin, J.-C. Dupont, T. Elias
Format: Article
Language:English
Published: Copernicus Publications 2019-04-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/4323/2019/acp-19-4323-2019.pdf
Description
Summary:<p>Comprehensive field campaigns dedicated to fog life cycle observation were conducted during the winters of 2010–2013 at the Instrumented Site for Atmospheric Remote Sensing Research (SIRTA) observatory in a suburb of Paris. In order to document their properties, in situ microphysical measurements collected during 23 fog events induced by both radiative cooling and stratus lowering are examined here. They reveal large variability in number, concentration and size of both aerosol background before the fog onset and fog droplets according to the different cases. The objective of this paper is to evaluate the impact of aerosol particles on the fog microphysics. To derive an accurate estimation of the actual activated fog droplet number concentration <span class="inline-formula"><i>N</i><sub>act</sub></span>, we determine the hygroscopicity parameter <span class="inline-formula"><i>κ</i></span>, the dry and the wet critical diameter and the critical supersaturation for each case by using an iterative procedure based on the <span class="inline-formula"><i>κ</i></span>-Köhler theory that combines cloud condensation nuclei (CCN), dry particle and droplet size distribution measurements.</p> <p>Our study reveals low values of the derived critical supersaturation occurring in fog with a median of 0.043&thinsp;%. Consequently, the median dry and wet activation diameters are 0.39 and 3.79&thinsp;<span class="inline-formula">µ</span>m, respectively, leading to a minor fraction of the aerosol population activated into droplets. The corresponding <span class="inline-formula"><i>N</i><sub>act</sub></span> values are low, with median concentrations of 53.5 and 111&thinsp;cm<span class="inline-formula"><sup>−3</sup></span> within the 75th percentile. The activated fraction of aerosols exhibits remarkably low correlation with <span class="inline-formula"><i>κ</i></span> values, which reflects the chemical composition of the aerosols. On the contrary, the activated fraction exhibits a strong correlation with the inferred critical diameter throughout the field campaigns. This suggests that the variability in the activated fraction is mostly driven by particle size, while variations in aerosol composition are of secondary importance. Moreover, our analysis suggests that the supersaturation reached in fog could be lowered by the aerosol number concentration, which could contribute to the sink term of water vapor during the radiative cooling. Although radiative fogs are usually associated with higher aerosol loading than stratus-lowering events, our analysis also reveals that the activated fraction at the beginning of the event is similar for both types of fog. However, the evolution of the droplet concentration during the fog life cycle shows significant differences between both types of fog.</p> <p>This work demonstrates that an accurate calculation of supersaturation is required to provide a realistic representation of fog microphysical properties in numerical models.</p>
ISSN:1680-7316
1680-7324