On the potential of sub-mm passive MW observations from geostationary satellites to retrieve heavy precipitation over the Mediterranean Area

The general interest in the potential use of the mm and sub-mm frequencies up to 425 GHz resolution from geostationary orbit is increasing due to the fact that the frequent time sampling and the comparable spatial resolution relative to the "classical" (≤89 GHz) microwave fr...

Full description

Bibliographic Details
Main Authors: S. Pinori, F. Baordo, C. M. Medaglia, A. Mugnai, B. Bizzarri
Format: Article
Language:English
Published: Copernicus Publications 2006-01-01
Series:Advances in Geosciences
Online Access:http://www.adv-geosci.net/7/387/2006/adgeo-7-387-2006.pdf
Description
Summary:The general interest in the potential use of the mm and sub-mm frequencies up to 425 GHz resolution from geostationary orbit is increasing due to the fact that the frequent time sampling and the comparable spatial resolution relative to the &quot;classical&quot; (&le;89 GHz) microwave frequencies would allow the monitoring of precipitating intense events for the assimilation of rain in now-casting weather prediction models. <br><br> In this paper, we use the simulation of a heavy precipitating event in front of the coast of Crete island (Greece) performed by the University of Wisconsin - Non-hydrostatic Modeling System (UW-NMS) cloud resolving model in conjunction with a 3D-adjusted plane parallel radiative transfer model to simulate the upwelling brightness temperatures (TB&apos;s) at mm and sub-mm frequencies. To study the potential use of high frequencies, we first analyze the relationships of the simulated TB&apos;s with the microphysical properties of the UW-NMS simulated precipitating clouds, and then explore the capability of a Bayesian algorithm for the retrieval of surface rain rate, rain and ice water paths at such frequencies.
ISSN:1680-7340
1680-7359