Snapping shrimp noise detection and mitigation for underwater acoustic orthogonal frequency division multiple communication using multilayer frequency

This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The propose...

Full description

Bibliographic Details
Main Authors: Jongmin Ahn, Hojun Lee, Yongcheol Kim, Jeahak Chung
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:International Journal of Naval Architecture and Ocean Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2092678219300688
Description
Summary:This paper proposes Snapping Shrimp Noise (SSN) detection and corrupted Orthogonal Frequency Division Multiplexing (OFDM) reconstruction methods to increase Bit Error Rate (BER) performance when OFDM transmitted signal is corrupted by impulsive SSNs in underwater acoustic communications. The proposed detection method utilizes multilayer wavelet packet decomposition for detecting impulsive and irregularly concentrated and SSN energy in specific frequency bands of SSN, and the proposed reconstruction scheme uses iterative decision directed-subcarrier reconstruction to recover corrupted OFDM signals using multiple carrier characteristics. Computer simulations were executed to show receiver operating characteristics curve for the detection performance and BER for the reconstruction. The practical ocean experiment of SAVEX 15 demonstrated that the proposed method exhibits a better detection performance compared with conventional detection method and improves BER by 250% and 1230% for uncoded and coded data, respectively, compared with the conventional reconstruction scheme.
ISSN:2092-6782