Genetic Algorithm-Based Variable Value Control Method for Solving the Ground Target Attacking Weapon-Target Allocation Problem

Key ground targets and ground target attacking weapon types are complex and diverse; thus, the weapon-target allocation (WTA) problem has long been a great challenge but has not yet been adequately addressed. A timely and reasonable WTA scheme not only helps to seize a fleeting combat opportunity bu...

Full description

Bibliographic Details
Main Authors: Chao Wang, Guangyuan Fu, Daqiao Zhang, Hongqiao Wang, Jiufen Zhao
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2019/6761073
Description
Summary:Key ground targets and ground target attacking weapon types are complex and diverse; thus, the weapon-target allocation (WTA) problem has long been a great challenge but has not yet been adequately addressed. A timely and reasonable WTA scheme not only helps to seize a fleeting combat opportunity but also optimizes the use of weaponry resources to achieve maximum battlefield benefits at the lowest cost. In this study, we constructed a ground target attacking WTA (GTA-WTA) model and designed a genetic algorithm-based variable value control method to address the issue that some intelligent algorithms are too slow in resolving the problem of GTA-WTA due to the large scale of the problem or are unable to obtain a feasible solution. The proposed method narrows the search space and improves the search efficiency by constraining and controlling the variable value range of the individuals in the initial population and ensures the quality of the solution by improving the mutation strategy to expand the range of variables. The simulation results show that the improved genetic algorithm (GA) can effectively solve the large-scale GTA-WTA problem with good performance.
ISSN:1024-123X
1563-5147