Stress-Strain diagrams for non-convex particles

While most granular materials in nature and technology consist of non-convex particles, the majority of discrete element (DEM) codes are still only able to cope with convex particles, due to the complexity of the computational geometry and the occurrence of multiple contacts. We have reengineered a...

Full description

Bibliographic Details
Main Authors: Matuttis Hans-Georg, Nawa Masaki, Krengel Dominik
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201714006005
Description
Summary:While most granular materials in nature and technology consist of non-convex particles, the majority of discrete element (DEM) codes are still only able to cope with convex particles, due to the complexity of the computational geometry and the occurrence of multiple contacts. We have reengineered a code for convex polygonal particles to model non-convex particles as rigidly connected clusters. Constricting non-convex particles along the symmetry axes by 30% leads to an increase of the materials strength of up to 50%.
ISSN:2100-014X