Automatic Geometric Processing for Very High Resolution Optical Satellite Data Based on Vector Roads and Orthophotos

In response to the increasing need for fast satellite image processing SPACE-SI developed STORM—a fully automatic image processing chain that performs all processing steps from the input optical images to web-delivered map-ready products for various sensors. This paper focuses on the automatic geome...

Full description

Bibliographic Details
Main Authors: Peter Pehani, Klemen Čotar, Aleš Marsetič, Janez Zaletelj, Krištof Oštir
Format: Article
Language:English
Published: MDPI AG 2016-04-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/8/4/343
Description
Summary:In response to the increasing need for fast satellite image processing SPACE-SI developed STORM—a fully automatic image processing chain that performs all processing steps from the input optical images to web-delivered map-ready products for various sensors. This paper focuses on the automatic geometric corrections module and its adaptation to very high resolution (VHR) multispectral images. In the automatic ground control points (GCPs) extraction sub-module a two-step algorithm that utilizes vector roads as a reference layer and delivers GCPs for high resolution RapidEye images with near pixel accuracy was initially implemented. Super-fine positioning of individual GCPs onto an aerial orthophoto was introduced for VHR images. The enhanced algorithm is capable of achieving accuracy of approximately 1.5 pixels on WorldView-2 data. In the case of RapidEye images the accuracies of the physical sensor model reach sub-pixel values at independent check points. When compared to the reference national aerial orthophoto the accuracies of WorldView-2 orthoimages automatically produced with the rational function model reach near-pixel values. On a heterogeneous set of 41 RapidEye images the rate of automatic processing reached 97.6%. Image processing times remained under one hour for standard-size images of both sensor types.
ISSN:2072-4292