Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution

Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydropon...

Full description

Bibliographic Details
Main Authors: Vu Ngoc Tuan, Abdul Mateen Khattak, Hui Zhu, Wanlin Gao, Minjuan Wang
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/18/5314
id doaj-62c824fcb1f84a3b8ad5bcd94bfa89c3
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Vu Ngoc Tuan
Abdul Mateen Khattak
Hui Zhu
Wanlin Gao
Minjuan Wang
spellingShingle Vu Ngoc Tuan
Abdul Mateen Khattak
Hui Zhu
Wanlin Gao
Minjuan Wang
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
Sensors
ion-selective electrode
multi-ion sensor array
artificial neural network
gaussian process
deep kernel learning
hydroponics
author_facet Vu Ngoc Tuan
Abdul Mateen Khattak
Hui Zhu
Wanlin Gao
Minjuan Wang
author_sort Vu Ngoc Tuan
title Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
title_short Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
title_full Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
title_fullStr Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
title_full_unstemmed Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
title_sort combination of multivariate standard addition technique and deep kernel learning model for determining multi-ion in hydroponic nutrient solution
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2020-09-01
description Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>O</mi><mn>3</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msup><mi>K</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msup><mi>a</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>l</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mn>4</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>M</mi><msup><mi>g</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L<sup>−1</sup> and 10–80 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> had RMSEs of 29.6 and 8.7 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system.
topic ion-selective electrode
multi-ion sensor array
artificial neural network
gaussian process
deep kernel learning
hydroponics
url https://www.mdpi.com/1424-8220/20/18/5314
work_keys_str_mv AT vungoctuan combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution
AT abdulmateenkhattak combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution
AT huizhu combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution
AT wanlingao combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution
AT minjuanwang combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution
_version_ 1724519644672294912
spelling doaj-62c824fcb1f84a3b8ad5bcd94bfa89c32020-11-25T03:43:29ZengMDPI AGSensors1424-82202020-09-01205314531410.3390/s20185314Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient SolutionVu Ngoc Tuan0Abdul Mateen Khattak1Hui Zhu2Wanlin Gao3Minjuan Wang4Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaCollege of Information and Electrical Engineering, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Liquor Making Biological Technology and Application, Zigong 643000, ChinaKey Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaKey Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaIon-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>O</mi><mn>3</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msup><mi>K</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msup><mi>a</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>l</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mn>4</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>M</mi><msup><mi>g</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L<sup>−1</sup> and 10–80 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> had RMSEs of 29.6 and 8.7 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system.https://www.mdpi.com/1424-8220/20/18/5314ion-selective electrodemulti-ion sensor arrayartificial neural networkgaussian processdeep kernel learninghydroponics