Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution
Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydropon...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/20/18/5314 |
id |
doaj-62c824fcb1f84a3b8ad5bcd94bfa89c3 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Vu Ngoc Tuan Abdul Mateen Khattak Hui Zhu Wanlin Gao Minjuan Wang |
spellingShingle |
Vu Ngoc Tuan Abdul Mateen Khattak Hui Zhu Wanlin Gao Minjuan Wang Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution Sensors ion-selective electrode multi-ion sensor array artificial neural network gaussian process deep kernel learning hydroponics |
author_facet |
Vu Ngoc Tuan Abdul Mateen Khattak Hui Zhu Wanlin Gao Minjuan Wang |
author_sort |
Vu Ngoc Tuan |
title |
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_short |
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_full |
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_fullStr |
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_full_unstemmed |
Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient Solution |
title_sort |
combination of multivariate standard addition technique and deep kernel learning model for determining multi-ion in hydroponic nutrient solution |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2020-09-01 |
description |
Ion-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>O</mi><mn>3</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msup><mi>K</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msup><mi>a</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>l</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mn>4</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>M</mi><msup><mi>g</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L<sup>−1</sup> and 10–80 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> had RMSEs of 29.6 and 8.7 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system. |
topic |
ion-selective electrode multi-ion sensor array artificial neural network gaussian process deep kernel learning hydroponics |
url |
https://www.mdpi.com/1424-8220/20/18/5314 |
work_keys_str_mv |
AT vungoctuan combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT abdulmateenkhattak combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT huizhu combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT wanlingao combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution AT minjuanwang combinationofmultivariatestandardadditiontechniqueanddeepkernellearningmodelfordeterminingmultiioninhydroponicnutrientsolution |
_version_ |
1724519644672294912 |
spelling |
doaj-62c824fcb1f84a3b8ad5bcd94bfa89c32020-11-25T03:43:29ZengMDPI AGSensors1424-82202020-09-01205314531410.3390/s20185314Combination of Multivariate Standard Addition Technique and Deep Kernel Learning Model for Determining Multi-Ion in Hydroponic Nutrient SolutionVu Ngoc Tuan0Abdul Mateen Khattak1Hui Zhu2Wanlin Gao3Minjuan Wang4Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaCollege of Information and Electrical Engineering, China Agricultural University, Beijing 100083, ChinaKey Laboratory of Liquor Making Biological Technology and Application, Zigong 643000, ChinaKey Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaKey Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, Beijing 100083, ChinaIon-selective electrodes (ISEs) have recently become the most attractive tools for the development of efficient hydroponic systems. Nevertheless, some inherent shortcomings such as signal drifts, secondary ion interferences, and effected high ionic strength make them difficult to apply in a hydroponic system. To minimize these deficiencies, we combined the multivariate standard addition (MSAM) sampling technique with the deep kernel learning (DKL) model for a six ISEs array to increase the prediction accuracy and precision of eight ions, including <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>O</mi><mn>3</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msubsup><mi>H</mi><mn>4</mn><mo>+</mo></msubsup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msup><mi>K</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>a</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><msup><mi>a</mi><mo>+</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><mi>C</mi><msup><mi>l</mi><mo>−</mo></msup></mrow></semantics></math></inline-formula>, <inline-formula><math display="inline"><semantics><mrow><msub><mi>H</mi><mn>2</mn></msub><mi>P</mi><msubsup><mi>O</mi><mn>4</mn><mo>−</mo></msubsup></mrow></semantics></math></inline-formula>, and <inline-formula><math display="inline"><semantics><mrow><mi>M</mi><msup><mi>g</mi><mrow><mn>2</mn><mo>+</mo></mrow></msup></mrow></semantics></math></inline-formula>. The enhanced data feature based on feature enrichment (FE) of the MSAM technique provided more useful information to DKL for improving the prediction reliability of the available ISE ions and enhanced the detection of unavailable ISE ions (phosphate and magnesium). The results showed that the combined MSAM–feature enrichment (FE)–DKL sensing structure for validating ten real hydroponic samples achieved low root mean square errors (RMSE) of 63.8, 8.3, 29.2, 18.5, 11.8, and 8.8 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> with below 8% coefficients of variation (CVs) for predicting nitrate, ammonium, potassium, calcium, sodium, and chloride, respectively. Moreover, the prediction of phosphate and magnesium in the ranges of 5–275 mg·L<sup>−1</sup> and 10–80 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> had RMSEs of 29.6 and 8.7 <inline-formula><math display="inline"><semantics><mrow><mi>mg</mi><mo>·</mo><msup><mi mathvariant="normal">L</mi><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> respectively. The results prove that the proposed approach can be applied successfully to improve the accuracy and feasibility of ISEs in a closed hydroponic system.https://www.mdpi.com/1424-8220/20/18/5314ion-selective electrodemulti-ion sensor arrayartificial neural networkgaussian processdeep kernel learninghydroponics |