Preparation, Characterization, and Performance Study of PVDF Nanocomposite Contained Hybrid Nanostructure TiO2-POM Used as a Photocatalytic Membrane
In this work, polyvinylidene fluoride membranes were modified by introducing nanostructure TiO2/SiO2/POM hybrid fibers in the polymeric dope, to endow them with photocatalytic properties. For this purpose, initially, hybrid fibers were synthesized by electrospinning and calcination technique, and th...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR
2021-02-01
|
Series: | Iranian Journal of Chemistry & Chemical Engineering |
Subjects: | |
Online Access: | http://www.ijcce.ac.ir/article_37264_6c9a8c532f68eb5a7165a1391baced54.pdf |
Summary: | In this work, polyvinylidene fluoride membranes were modified by introducing nanostructure TiO2/SiO2/POM hybrid fibers in the polymeric dope, to endow them with photocatalytic properties. For this purpose, initially, hybrid fibers were synthesized by electrospinning and calcination technique, and then these additives were incorporated into the membrane matrix. FT-IR and XRD analysis were used for the characterization of synthesized compounds. The FESEM manifests that the average diameter of the hybrid composite fibers is about 500 nm, and investigated membrane morphology. The properties of the prepared photocatalytic membrane were examined by several investigations such as pure water flux, contact angle, salt, and heavy metal rejection. Photocatalytic experiments confirm that membranes display a highly efficient and durable activity for the photodegradation of Methylene Bue (MB) and Humic Acid (HA). Experiments show that the prepared membranes have excellent stability under UV irradiation and can be used potentially for the separation of different components from water. The measurement accuracy and repeatability were determined by calculating the Standard Deviation and entered into Tables. |
---|---|
ISSN: | 1021-9986 1021-9986 |