Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France

We perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the co...

Full description

Bibliographic Details
Main Authors: T. Chartier, O. Scotti, C. Clément, H. Jomard, S. Baize
Format: Article
Language:English
Published: Copernicus Publications 2017-09-01
Series:Natural Hazards and Earth System Sciences
Online Access:https://www.nat-hazards-earth-syst-sci.net/17/1585/2017/nhess-17-1585-2017.pdf
id doaj-62adf6f197f94917979de3642dbe99f6
record_format Article
spelling doaj-62adf6f197f94917979de3642dbe99f62020-11-24T22:31:31ZengCopernicus PublicationsNatural Hazards and Earth System Sciences1561-86331684-99812017-09-01171585159310.5194/nhess-17-1585-2017Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern FranceT. Chartier0T. Chartier1O. Scotti2C. Clément3H. Jomard4S. Baize5Bureau d'Evaluation des Risques Sismiques pour la Sûreté des Installations, Fontenay-aux-Roses, 92262, FranceToday at Département de Géosciences, Ecole Normale Supérieure, Paris, 75005, FranceBureau d'Evaluation des Risques Sismiques pour la Sûreté des Installations, Fontenay-aux-Roses, 92262, FranceBureau d'Evaluation des Risques Sismiques pour la Sûreté des Installations, Fontenay-aux-Roses, 92262, FranceBureau d'Evaluation des Risques Sismiques pour la Sûreté des Installations, Fontenay-aux-Roses, 92262, FranceBureau d'Evaluation des Risques Sismiques pour la Sûreté des Installations, Fontenay-aux-Roses, 92262, FranceWe perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the companion paper (Jomard et al., 2017, hereafter Part 1) are the dominant factor in hazard estimates at the low annual probability of exceedance relevant for the safety assessment of nuclear installations. Geological information documenting the activity of the faults in this region, however, remains sparse, controversial and affected by a high degree of uncertainty. A logic tree approach is thus implemented to explore the epistemic uncertainty and quantify its impact on the seismic hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard at a 10 000-year return period shows that the Rhine River fault is the main seismic source controlling the hazard level at the site. Sensitivity tests show that the uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to 0.1 mm yr<sup>−1</sup> results in a 40 to 50 % increase in hazard levels at the 10 000-year target return period. Reducing epistemic uncertainty in future fault-based PSHA studies at this site will thus require (1) performing in-depth field studies to better characterize the seismic potential of the Rhine River fault; (2) complementing GMPEs with more physics-based modelling approaches to better account for the near-field effects of ground motion and (3) improving the modelling of the background seismicity. Indeed, in this exercise, we assume that background earthquakes can only host <i>M</i>  &lt;  6. 0 earthquakes. However, this assumption is debatable, since faults that can host <i>M</i>  &gt;  6. 0 earthquakes have been recently identified at depth within the Upper Rhine Graben (see Part 1) but are not accounted for in this exercise since their potential activity has not yet been described.https://www.nat-hazards-earth-syst-sci.net/17/1585/2017/nhess-17-1585-2017.pdf
collection DOAJ
language English
format Article
sources DOAJ
author T. Chartier
T. Chartier
O. Scotti
C. Clément
H. Jomard
S. Baize
spellingShingle T. Chartier
T. Chartier
O. Scotti
C. Clément
H. Jomard
S. Baize
Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
Natural Hazards and Earth System Sciences
author_facet T. Chartier
T. Chartier
O. Scotti
C. Clément
H. Jomard
S. Baize
author_sort T. Chartier
title Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
title_short Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
title_full Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
title_fullStr Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
title_full_unstemmed Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France
title_sort transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – part 2: impact of fault parameter uncertainties on a site-specific psha exercise in the upper rhine graben, eastern france
publisher Copernicus Publications
series Natural Hazards and Earth System Sciences
issn 1561-8633
1684-9981
publishDate 2017-09-01
description We perform a fault-based probabilistic seismic hazard assessment (PSHA) exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Specifically, we show that the potentially active faults described in the companion paper (Jomard et al., 2017, hereafter Part 1) are the dominant factor in hazard estimates at the low annual probability of exceedance relevant for the safety assessment of nuclear installations. Geological information documenting the activity of the faults in this region, however, remains sparse, controversial and affected by a high degree of uncertainty. A logic tree approach is thus implemented to explore the epistemic uncertainty and quantify its impact on the seismic hazard estimates. Disaggregation of the peak ground acceleration (PGA) hazard at a 10 000-year return period shows that the Rhine River fault is the main seismic source controlling the hazard level at the site. Sensitivity tests show that the uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs). Uncertainty on slip rate estimates from 0.04 to 0.1 mm yr<sup>−1</sup> results in a 40 to 50 % increase in hazard levels at the 10 000-year target return period. Reducing epistemic uncertainty in future fault-based PSHA studies at this site will thus require (1) performing in-depth field studies to better characterize the seismic potential of the Rhine River fault; (2) complementing GMPEs with more physics-based modelling approaches to better account for the near-field effects of ground motion and (3) improving the modelling of the background seismicity. Indeed, in this exercise, we assume that background earthquakes can only host <i>M</i>  &lt;  6. 0 earthquakes. However, this assumption is debatable, since faults that can host <i>M</i>  &gt;  6. 0 earthquakes have been recently identified at depth within the Upper Rhine Graben (see Part 1) but are not accounted for in this exercise since their potential activity has not yet been described.
url https://www.nat-hazards-earth-syst-sci.net/17/1585/2017/nhess-17-1585-2017.pdf
work_keys_str_mv AT tchartier transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
AT tchartier transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
AT oscotti transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
AT cclement transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
AT hjomard transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
AT sbaize transposinganactivefaultdatabaseintoafaultbasedseismichazardassessmentfornuclearfacilitiespart2impactoffaultparameteruncertaintiesonasitespecificpshaexerciseintheupperrhinegrabeneasternfrance
_version_ 1725736706725904384