Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias
Modelling field spatial patterns is standard practice for the analysis of plant breeding. Jointly fitting the genetic relationship among individuals and spatial information enables better separability between the variance due to genetics and field variation. This study aims to quantify the accuracy...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Agronomy |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4395/11/7/1397 |
id |
doaj-62ab9c05ecb847a9a35787a985084950 |
---|---|
record_format |
Article |
spelling |
doaj-62ab9c05ecb847a9a35787a9850849502021-07-23T13:26:36ZengMDPI AGAgronomy2073-43952021-07-01111397139710.3390/agronomy11071397Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and BiasÉder David Borges da Silva0Alencar Xavier1Marcos Ventura Faria2Department of Plant Breeding, Corteva Agriscience, Rio Verde Research Station, Rio Verde 75909-796, GO, BrazilDepartment of Biostatistics, Corteva Agriscience, Johnston, IA 50131, USADepartamento de Agronomia, Universidade Estadual do Centro Oeste, Guarapuava 85040-167, PR, BrazilModelling field spatial patterns is standard practice for the analysis of plant breeding. Jointly fitting the genetic relationship among individuals and spatial information enables better separability between the variance due to genetics and field variation. This study aims to quantify the accuracy and bias of estimative parameters using different approaches. We contrasted three settings for the genetic term: no relationship (I), pedigree relationship (A), and genomic relationship (G); and a set of approaches for the spatial variation: no-spatial (NS), moving average covariate (MA), row-column adjustment (RC), autoregressive AR1 × AR1 (AR), spatial stochastic partial differential equations, or SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK). Simulations were set to represent soybean field trials at F<sub>2:4</sub> generation. Heritability was sampled from a uniform distribution U(0,1). The simulated residual-to-spatial ratio between residual variance and spatial variance (Ve:Vs) ranged from 9:1 to 1:9. Experimental settings were conducted under an augmented block design with the systematic distribution of checks accounting for 10% of the plots. Relationship information had a substantial impact on the accuracy of the genetic values (G > A > I) and contributed to the accuracy of spatial effects (30.63–42.27% improvement). Spatial models were ranked based on an improvement to the accuracy of estimative of genetic effects as SD ≥ GK ≥ AR ≥ NG ≥ MA > RC ≥ NS, and to the accuracy of estimative of spatial effects as GK ≥ SD ≥ NG > AR ≥ MA > RC. Estimates of genetic and spatial variance were generally biased downwards, whereas residual variances were biased upwards. The advent of relationship information reduced the bias of all variance components. Spatial methods SD, AR, and GK provided the least biased estimates of spatial and residual variance.https://www.mdpi.com/2073-4395/11/7/1397field plot variationspatial adjustmentgenomic selectionssoybean breedingspatial modeling |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Éder David Borges da Silva Alencar Xavier Marcos Ventura Faria |
spellingShingle |
Éder David Borges da Silva Alencar Xavier Marcos Ventura Faria Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias Agronomy field plot variation spatial adjustment genomic selections soybean breeding spatial modeling |
author_facet |
Éder David Borges da Silva Alencar Xavier Marcos Ventura Faria |
author_sort |
Éder David Borges da Silva |
title |
Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias |
title_short |
Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias |
title_full |
Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias |
title_fullStr |
Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias |
title_full_unstemmed |
Joint Modeling of Genetics and Field Variation in Plant Breeding Trials Using Relationship and Different Spatial Methods: A Simulation Study of Accuracy and Bias |
title_sort |
joint modeling of genetics and field variation in plant breeding trials using relationship and different spatial methods: a simulation study of accuracy and bias |
publisher |
MDPI AG |
series |
Agronomy |
issn |
2073-4395 |
publishDate |
2021-07-01 |
description |
Modelling field spatial patterns is standard practice for the analysis of plant breeding. Jointly fitting the genetic relationship among individuals and spatial information enables better separability between the variance due to genetics and field variation. This study aims to quantify the accuracy and bias of estimative parameters using different approaches. We contrasted three settings for the genetic term: no relationship (I), pedigree relationship (A), and genomic relationship (G); and a set of approaches for the spatial variation: no-spatial (NS), moving average covariate (MA), row-column adjustment (RC), autoregressive AR1 × AR1 (AR), spatial stochastic partial differential equations, or SPDE (SD), nearest neighbor graph (NG), and Gaussian kernel (GK). Simulations were set to represent soybean field trials at F<sub>2:4</sub> generation. Heritability was sampled from a uniform distribution U(0,1). The simulated residual-to-spatial ratio between residual variance and spatial variance (Ve:Vs) ranged from 9:1 to 1:9. Experimental settings were conducted under an augmented block design with the systematic distribution of checks accounting for 10% of the plots. Relationship information had a substantial impact on the accuracy of the genetic values (G > A > I) and contributed to the accuracy of spatial effects (30.63–42.27% improvement). Spatial models were ranked based on an improvement to the accuracy of estimative of genetic effects as SD ≥ GK ≥ AR ≥ NG ≥ MA > RC ≥ NS, and to the accuracy of estimative of spatial effects as GK ≥ SD ≥ NG > AR ≥ MA > RC. Estimates of genetic and spatial variance were generally biased downwards, whereas residual variances were biased upwards. The advent of relationship information reduced the bias of all variance components. Spatial methods SD, AR, and GK provided the least biased estimates of spatial and residual variance. |
topic |
field plot variation spatial adjustment genomic selections soybean breeding spatial modeling |
url |
https://www.mdpi.com/2073-4395/11/7/1397 |
work_keys_str_mv |
AT ederdavidborgesdasilva jointmodelingofgeneticsandfieldvariationinplantbreedingtrialsusingrelationshipanddifferentspatialmethodsasimulationstudyofaccuracyandbias AT alencarxavier jointmodelingofgeneticsandfieldvariationinplantbreedingtrialsusingrelationshipanddifferentspatialmethodsasimulationstudyofaccuracyandbias AT marcosventurafaria jointmodelingofgeneticsandfieldvariationinplantbreedingtrialsusingrelationshipanddifferentspatialmethodsasimulationstudyofaccuracyandbias |
_version_ |
1721289902515027968 |