Chemically-Induced Inflammation Changes the Number of Nitrergic Nervous Structures in the Muscular Layer of the Porcine Descending Colon

The enteric nervous system (ENS) is the part of the nervous system that is located in the wall of the gastrointestinal tract and regulates the majority of the functions of the stomach and intestine. Enteric neurons may contain various active substances that act as neuromediators and/or neuromodulato...

Full description

Bibliographic Details
Main Authors: Liliana Rytel, Ignacy Gonkowski, Waldemar Grzegorzewski, Joanna Wojtkiewicz
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/11/2/394
Description
Summary:The enteric nervous system (ENS) is the part of the nervous system that is located in the wall of the gastrointestinal tract and regulates the majority of the functions of the stomach and intestine. Enteric neurons may contain various active substances that act as neuromediators and/or neuromodulators. One of them is a gaseous substance, namely nitric oxide (NO). It is known that NO in the gastrointestinal (GI) tract may possess inhibitory functions; however, many of the aspects connected with the roles of this substance, especially during pathological states, remain not fully understood. An experiment is performed here with 15 pigs divided into 3 groups: C group (without any treatment), C1 group (“sham” operated), and C2 group, in which experimental inflammation was induced. The aim of this study is to investigate the influence of inflammation on nitrergic nervous structures in the muscular layer of the porcine descending colon using an immunofluorescence method. The obtained results show that inflammation causes an increase in the percentage of nitric oxide synthase (nNOS)-positive neurons in the myenteric plexus of the ENS, as well as the number of nitrergic nerve fibers in the muscular layer of the descending colon. The obtained results suggest that NO is involved in the pathological condition of the large bowel and probably takes part in neuroprotective and/or adaptive processes.
ISSN:2076-2615