Donaldson-Witten theory and indefinite theta functions

Abstract We consider partition functions with insertions of surface operators of topologically twisted N=2 $$ \mathcal{N}=2 $$, SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature,...

Full description

Bibliographic Details
Main Authors: Georgios Korpas, Jan Manschot
Format: Article
Language:English
Published: SpringerOpen 2017-11-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP11(2017)083
id doaj-6286e635c03e4c41a2903c82784a5b47
record_format Article
spelling doaj-6286e635c03e4c41a2903c82784a5b472020-11-25T02:28:30ZengSpringerOpenJournal of High Energy Physics1029-84792017-11-0120171113010.1007/JHEP11(2017)083Donaldson-Witten theory and indefinite theta functionsGeorgios Korpas0Jan Manschot1School of Mathematics, Trinity College, College GreenSchool of Mathematics, Trinity College, College GreenAbstract We consider partition functions with insertions of surface operators of topologically twisted N=2 $$ \mathcal{N}=2 $$, SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a Q¯ $$ \overline{\mathcal{Q}} $$-exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers’ indefinite theta functions. In this way, we reproduce Göttsche’s expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.http://link.springer.com/article/10.1007/JHEP11(2017)083Supersymmetric Gauge TheoryTopological Field TheoriesSupersymmetry and Duality
collection DOAJ
language English
format Article
sources DOAJ
author Georgios Korpas
Jan Manschot
spellingShingle Georgios Korpas
Jan Manschot
Donaldson-Witten theory and indefinite theta functions
Journal of High Energy Physics
Supersymmetric Gauge Theory
Topological Field Theories
Supersymmetry and Duality
author_facet Georgios Korpas
Jan Manschot
author_sort Georgios Korpas
title Donaldson-Witten theory and indefinite theta functions
title_short Donaldson-Witten theory and indefinite theta functions
title_full Donaldson-Witten theory and indefinite theta functions
title_fullStr Donaldson-Witten theory and indefinite theta functions
title_full_unstemmed Donaldson-Witten theory and indefinite theta functions
title_sort donaldson-witten theory and indefinite theta functions
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2017-11-01
description Abstract We consider partition functions with insertions of surface operators of topologically twisted N=2 $$ \mathcal{N}=2 $$, SU(2) supersymmetric Yang-Mills theory, or Donaldson-Witten theory for short, on a four-manifold. If the metric of the compact four-manifold has positive scalar curvature, Moore and Witten have shown that the partition function is completely determined by the integral over the Coulomb branch parameter a, while more generally the Coulomb branch integral captures the wall-crossing behavior of both Donaldson polynomials and Seiberg-Witten invariants. We show that after addition of a Q¯ $$ \overline{\mathcal{Q}} $$-exact surface operator to the Moore-Witten integrand, the integrand can be written as a total derivative to the anti-holomorphic coordinate ā using Zwegers’ indefinite theta functions. In this way, we reproduce Göttsche’s expressions for Donaldson invariants of rational surfaces in terms of indefinite theta functions for any choice of metric.
topic Supersymmetric Gauge Theory
Topological Field Theories
Supersymmetry and Duality
url http://link.springer.com/article/10.1007/JHEP11(2017)083
work_keys_str_mv AT georgioskorpas donaldsonwittentheoryandindefinitethetafunctions
AT janmanschot donaldsonwittentheoryandindefinitethetafunctions
_version_ 1724837510125715456