Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient

Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations a...

Full description

Bibliographic Details
Main Authors: Rosana eLópez, Francisco Javier Cano, Brendan eChoat, Heve eCochard, Luis eGil
Format: Article
Language:English
Published: Frontiers Media S.A. 2016-06-01
Series:Frontiers in Plant Science
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fpls.2016.00769/full
id doaj-627f5a7b0a4c4200af86a7ad3fa0ab55
record_format Article
spelling doaj-627f5a7b0a4c4200af86a7ad3fa0ab552020-11-24T21:29:16ZengFrontiers Media S.A.Frontiers in Plant Science1664-462X2016-06-01710.3389/fpls.2016.00769188183Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradientRosana eLópez0Francisco Javier Cano1Brendan eChoat2Heve eCochard3Heve eCochard4Luis eGil5Technical University of MadridTechnical University of MadridWestern Sydney UniversistyINRAUniversité Blaise PascalTechnical University of MadridWater availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.http://journal.frontiersin.org/Journal/10.3389/fpls.2016.00769/fulldroughtphenotypic plasticityhydraulic conductivitygenetic differentiationProvenance trialsPinus canariensis
collection DOAJ
language English
format Article
sources DOAJ
author Rosana eLópez
Francisco Javier Cano
Brendan eChoat
Heve eCochard
Heve eCochard
Luis eGil
spellingShingle Rosana eLópez
Francisco Javier Cano
Brendan eChoat
Heve eCochard
Heve eCochard
Luis eGil
Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
Frontiers in Plant Science
drought
phenotypic plasticity
hydraulic conductivity
genetic differentiation
Provenance trials
Pinus canariensis
author_facet Rosana eLópez
Francisco Javier Cano
Brendan eChoat
Heve eCochard
Heve eCochard
Luis eGil
author_sort Rosana eLópez
title Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
title_short Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
title_full Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
title_fullStr Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
title_full_unstemmed Plasticity in vulnerability to cavitation of Pinus canariensis occurs only at the driest end of an aridity gradient
title_sort plasticity in vulnerability to cavitation of pinus canariensis occurs only at the driest end of an aridity gradient
publisher Frontiers Media S.A.
series Frontiers in Plant Science
issn 1664-462X
publishDate 2016-06-01
description Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.
topic drought
phenotypic plasticity
hydraulic conductivity
genetic differentiation
Provenance trials
Pinus canariensis
url http://journal.frontiersin.org/Journal/10.3389/fpls.2016.00769/full
work_keys_str_mv AT rosanaelopez plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
AT franciscojaviercano plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
AT brendanechoat plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
AT heveecochard plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
AT heveecochard plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
AT luisegil plasticityinvulnerabilitytocavitationofpinuscanariensisoccursonlyatthedriestendofanariditygradient
_version_ 1725966486554542080