Asymptotic stability of a Korteweg–de Vries equation with a two-dimensional center manifold
Local asymptotic stability analysis is conducted for an initial-boundary-value problem of a Korteweg–de Vries equation posed on a finite interval [0,2π7/3]{[0,2\pi\sqrt{7/3}]}. The equation comes with a Dirichlet boundary condition at the left end-point and both the Dirichlet and Neumann homogeneo...
Main Authors: | Tang Shuxia, Chu Jixun, Shang Peipei, Coron Jean-Michel |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2018-11-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2016-0097 |
Similar Items
-
Algebraic traveling waves for the modified Korteweg–de-Vries–Burgers equation
by: Claudia Valls
Published: (2020-07-01) -
Korteweg-de Vries-Burgers Equation on a Segment
by: Elena I Kaikina, et al.
Published: (2010-01-01) -
Compact schemes for Korteweg-de Vries equation
by: Yin Xiu-Ling, et al.
Published: (2017-01-01) -
A study of the non-isospectral modified Korteweg-de Vries equation with variable coefficients.
Published: (1997) -
Estudio local de la ecuación de Korteweg-De Vries modificada II
by: Vigo Ingar, Katia
Published: (2017)