Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks

In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein thr...

Full description

Bibliographic Details
Main Authors: Neil Patrick Del Gallego, Joel Ilao, Macario Cordel
Format: Article
Language:English
Published: MDPI AG 2020-08-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/20/17/4898
id doaj-6259f9bd141a4954ad213c4b916fdce7
record_format Article
spelling doaj-6259f9bd141a4954ad213c4b916fdce72020-11-25T03:41:19ZengMDPI AGSensors1424-82202020-08-01204898489810.3390/s20174898Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural NetworksNeil Patrick Del Gallego0Joel Ilao1Macario Cordel2Software Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesComputer Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesComputer Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesIn this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> transformation matrix, <inline-formula><math display="inline"><semantics><mover accent="true"><mi>M</mi><mo>^</mo></mover></semantics></math></inline-formula>. The corrected image is produced by transforming the distorted input image using <inline-formula><math display="inline"><semantics><msup><mover accent="true"><mi>M</mi><mo>^</mo></mover><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works.https://www.mdpi.com/1424-8220/20/17/4898computer visiondistortion correctionimage warpingconvolutional neural networks
collection DOAJ
language English
format Article
sources DOAJ
author Neil Patrick Del Gallego
Joel Ilao
Macario Cordel
spellingShingle Neil Patrick Del Gallego
Joel Ilao
Macario Cordel
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
Sensors
computer vision
distortion correction
image warping
convolutional neural networks
author_facet Neil Patrick Del Gallego
Joel Ilao
Macario Cordel
author_sort Neil Patrick Del Gallego
title Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
title_short Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
title_full Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
title_fullStr Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
title_full_unstemmed Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
title_sort blind first-order perspective distortion correction using parallel convolutional neural networks
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2020-08-01
description In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> transformation matrix, <inline-formula><math display="inline"><semantics><mover accent="true"><mi>M</mi><mo>^</mo></mover></semantics></math></inline-formula>. The corrected image is produced by transforming the distorted input image using <inline-formula><math display="inline"><semantics><msup><mover accent="true"><mi>M</mi><mo>^</mo></mover><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works.
topic computer vision
distortion correction
image warping
convolutional neural networks
url https://www.mdpi.com/1424-8220/20/17/4898
work_keys_str_mv AT neilpatrickdelgallego blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks
AT joelilao blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks
AT macariocordel blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks
_version_ 1724530380120260608