Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks
In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein thr...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-08-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/20/17/4898 |
id |
doaj-6259f9bd141a4954ad213c4b916fdce7 |
---|---|
record_format |
Article |
spelling |
doaj-6259f9bd141a4954ad213c4b916fdce72020-11-25T03:41:19ZengMDPI AGSensors1424-82202020-08-01204898489810.3390/s20174898Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural NetworksNeil Patrick Del Gallego0Joel Ilao1Macario Cordel2Software Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesComputer Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesComputer Technology, De La Salle University, 2401 Taft Ave, Malate, Manila, Metro Manila 1004, PhilippinesIn this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> transformation matrix, <inline-formula><math display="inline"><semantics><mover accent="true"><mi>M</mi><mo>^</mo></mover></semantics></math></inline-formula>. The corrected image is produced by transforming the distorted input image using <inline-formula><math display="inline"><semantics><msup><mover accent="true"><mi>M</mi><mo>^</mo></mover><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works.https://www.mdpi.com/1424-8220/20/17/4898computer visiondistortion correctionimage warpingconvolutional neural networks |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Neil Patrick Del Gallego Joel Ilao Macario Cordel |
spellingShingle |
Neil Patrick Del Gallego Joel Ilao Macario Cordel Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks Sensors computer vision distortion correction image warping convolutional neural networks |
author_facet |
Neil Patrick Del Gallego Joel Ilao Macario Cordel |
author_sort |
Neil Patrick Del Gallego |
title |
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks |
title_short |
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks |
title_full |
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks |
title_fullStr |
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks |
title_full_unstemmed |
Blind First-Order Perspective Distortion Correction Using Parallel Convolutional Neural Networks |
title_sort |
blind first-order perspective distortion correction using parallel convolutional neural networks |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2020-08-01 |
description |
In this work, we present a network architecture with parallel convolutional neural networks (CNN) for removing perspective distortion in images. While other works generate corrected images through the use of generative adversarial networks or encoder-decoder networks, we propose a method wherein three CNNs are trained in parallel, to predict a certain element pair in the <inline-formula><math display="inline"><semantics><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></semantics></math></inline-formula> transformation matrix, <inline-formula><math display="inline"><semantics><mover accent="true"><mi>M</mi><mo>^</mo></mover></semantics></math></inline-formula>. The corrected image is produced by transforming the distorted input image using <inline-formula><math display="inline"><semantics><msup><mover accent="true"><mi>M</mi><mo>^</mo></mover><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>. The networks are trained from our generated distorted image dataset using KITTI images. Experimental results show promise in this approach, as our method is capable of correcting perspective distortions on images and outperforms other state-of-the-art methods. Our method also recovers the intended scale and proportion of the image, which is not observed in other works. |
topic |
computer vision distortion correction image warping convolutional neural networks |
url |
https://www.mdpi.com/1424-8220/20/17/4898 |
work_keys_str_mv |
AT neilpatrickdelgallego blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks AT joelilao blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks AT macariocordel blindfirstorderperspectivedistortioncorrectionusingparallelconvolutionalneuralnetworks |
_version_ |
1724530380120260608 |