Cembrene Diterpenoids with Ether Linkages from Sarcophyton ehrenbergi: An Anti-Proliferation and Molecular-Docking Assessment

Three new cembrene diterpenoids, sarcoehrenbergilid A–C (1–3), along with four known diterpenoids, sarcophine (4), (+)-7α,8β-dihydroxydeepoxysarcophine (5), sinulolide A (6), and sinulolide B (7), and one steroid, sardisterol (8), were isolated and characterized from a solvent extract of the Red Sea...

Full description

Bibliographic Details
Main Authors: Mohamed-Elamir F. Hegazy, Abdelsamed I. Elshamy, Tarik A. Mohamed, Ahmed R. Hamed, Mahmoud A. A. Ibrahim, Shinji Ohta, Paul W. Paré
Format: Article
Language:English
Published: MDPI AG 2017-06-01
Series:Marine Drugs
Subjects:
Online Access:http://www.mdpi.com/1660-3397/15/6/192
Description
Summary:Three new cembrene diterpenoids, sarcoehrenbergilid A–C (1–3), along with four known diterpenoids, sarcophine (4), (+)-7α,8β-dihydroxydeepoxysarcophine (5), sinulolide A (6), and sinulolide B (7), and one steroid, sardisterol (8), were isolated and characterized from a solvent extract of the Red Sea soft coral Sarcophyton ehrenbergi. Chemical structures were elucidated by NMR and MS analyses with absolute stereochemistry determined by X-ray analysis. Since these isolated cembrene diterpenes contained 10 or more carbons in a large flexible ring, conformer stabilities were examined based on density functional theory calculations. Anti-proliferative activities for 1–8 were evaluated against three human tumor cell lines of different origins including the: lung (A549), colon (Caco-2), and liver (HepG2). Sardisterol (8) was the most potent of the metabolites isolated with an IC50 of 27.3 µM against the A549 cell line. Since an elevated human-cancer occurrence is associated with an aberrant receptor function for the epidermal growth factor receptor (EGFR), molecular docking studies were used to examine preferential metabolite interactions/binding and probe the mode-of-action for metabolite-anti tumor activity.
ISSN:1660-3397