An Analytical EM Algorithm for Sub-Gaussian Vectors

The area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a la...

Full description

Bibliographic Details
Main Authors: Audrius Kabašinskas, Leonidas Sakalauskas, Ingrida Vaičiulytė
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/9/945
id doaj-6255184ca8fc4c65b805328ce568f6b4
record_format Article
spelling doaj-6255184ca8fc4c65b805328ce568f6b42021-04-23T23:03:32ZengMDPI AGMathematics2227-73902021-04-01994594510.3390/math9090945An Analytical EM Algorithm for Sub-Gaussian VectorsAudrius Kabašinskas0Leonidas Sakalauskas1Ingrida Vaičiulytė2Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, 51368 Kaunas, LithuaniaŠiauliai Academy, Vilnius University, 76352 Šiauliai, LithuaniaFaculty of Business and Technologies, Šiauliai State College, 76241 Šiauliai, LithuaniaThe area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a lack of parameter estimation methods and theoretical limitations diminish its potential. Traditionally, the maximum likelihood estimation of parameters has been considered using a representation of the multivariate stable vector through a multivariate normal vector and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. This paper introduces an analytical expectation maximization (EM) algorithm for the estimation of parameters of symmetric multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable random variables. Our numerical results show that the convergence of the proposed algorithm is much faster than that of existing algorithms. Moreover, the likelihood ratio (goodness-of-fit) test for a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution was implemented. Empirical examples with simulated and real world (stocks, AIS and cryptocurrencies) data showed that the likelihood ratio test can be useful for assessing goodness-of-fit.https://www.mdpi.com/2227-7390/9/9/945EM algorithmmaximum likelihood methodstatistical modelingα-stable distributioncrypto-currency
collection DOAJ
language English
format Article
sources DOAJ
author Audrius Kabašinskas
Leonidas Sakalauskas
Ingrida Vaičiulytė
spellingShingle Audrius Kabašinskas
Leonidas Sakalauskas
Ingrida Vaičiulytė
An Analytical EM Algorithm for Sub-Gaussian Vectors
Mathematics
EM algorithm
maximum likelihood method
statistical modeling
α-stable distribution
crypto-currency
author_facet Audrius Kabašinskas
Leonidas Sakalauskas
Ingrida Vaičiulytė
author_sort Audrius Kabašinskas
title An Analytical EM Algorithm for Sub-Gaussian Vectors
title_short An Analytical EM Algorithm for Sub-Gaussian Vectors
title_full An Analytical EM Algorithm for Sub-Gaussian Vectors
title_fullStr An Analytical EM Algorithm for Sub-Gaussian Vectors
title_full_unstemmed An Analytical EM Algorithm for Sub-Gaussian Vectors
title_sort analytical em algorithm for sub-gaussian vectors
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-04-01
description The area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a lack of parameter estimation methods and theoretical limitations diminish its potential. Traditionally, the maximum likelihood estimation of parameters has been considered using a representation of the multivariate stable vector through a multivariate normal vector and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. This paper introduces an analytical expectation maximization (EM) algorithm for the estimation of parameters of symmetric multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable random variables. Our numerical results show that the convergence of the proposed algorithm is much faster than that of existing algorithms. Moreover, the likelihood ratio (goodness-of-fit) test for a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution was implemented. Empirical examples with simulated and real world (stocks, AIS and cryptocurrencies) data showed that the likelihood ratio test can be useful for assessing goodness-of-fit.
topic EM algorithm
maximum likelihood method
statistical modeling
α-stable distribution
crypto-currency
url https://www.mdpi.com/2227-7390/9/9/945
work_keys_str_mv AT audriuskabasinskas ananalyticalemalgorithmforsubgaussianvectors
AT leonidassakalauskas ananalyticalemalgorithmforsubgaussianvectors
AT ingridavaiciulyte ananalyticalemalgorithmforsubgaussianvectors
AT audriuskabasinskas analyticalemalgorithmforsubgaussianvectors
AT leonidassakalauskas analyticalemalgorithmforsubgaussianvectors
AT ingridavaiciulyte analyticalemalgorithmforsubgaussianvectors
_version_ 1721512169254682624