An Analytical EM Algorithm for Sub-Gaussian Vectors
The area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a la...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/9/945 |
id |
doaj-6255184ca8fc4c65b805328ce568f6b4 |
---|---|
record_format |
Article |
spelling |
doaj-6255184ca8fc4c65b805328ce568f6b42021-04-23T23:03:32ZengMDPI AGMathematics2227-73902021-04-01994594510.3390/math9090945An Analytical EM Algorithm for Sub-Gaussian VectorsAudrius Kabašinskas0Leonidas Sakalauskas1Ingrida Vaičiulytė2Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, 51368 Kaunas, LithuaniaŠiauliai Academy, Vilnius University, 76352 Šiauliai, LithuaniaFaculty of Business and Technologies, Šiauliai State College, 76241 Šiauliai, LithuaniaThe area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a lack of parameter estimation methods and theoretical limitations diminish its potential. Traditionally, the maximum likelihood estimation of parameters has been considered using a representation of the multivariate stable vector through a multivariate normal vector and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. This paper introduces an analytical expectation maximization (EM) algorithm for the estimation of parameters of symmetric multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable random variables. Our numerical results show that the convergence of the proposed algorithm is much faster than that of existing algorithms. Moreover, the likelihood ratio (goodness-of-fit) test for a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution was implemented. Empirical examples with simulated and real world (stocks, AIS and cryptocurrencies) data showed that the likelihood ratio test can be useful for assessing goodness-of-fit.https://www.mdpi.com/2227-7390/9/9/945EM algorithmmaximum likelihood methodstatistical modelingα-stable distributioncrypto-currency |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Audrius Kabašinskas Leonidas Sakalauskas Ingrida Vaičiulytė |
spellingShingle |
Audrius Kabašinskas Leonidas Sakalauskas Ingrida Vaičiulytė An Analytical EM Algorithm for Sub-Gaussian Vectors Mathematics EM algorithm maximum likelihood method statistical modeling α-stable distribution crypto-currency |
author_facet |
Audrius Kabašinskas Leonidas Sakalauskas Ingrida Vaičiulytė |
author_sort |
Audrius Kabašinskas |
title |
An Analytical EM Algorithm for Sub-Gaussian Vectors |
title_short |
An Analytical EM Algorithm for Sub-Gaussian Vectors |
title_full |
An Analytical EM Algorithm for Sub-Gaussian Vectors |
title_fullStr |
An Analytical EM Algorithm for Sub-Gaussian Vectors |
title_full_unstemmed |
An Analytical EM Algorithm for Sub-Gaussian Vectors |
title_sort |
analytical em algorithm for sub-gaussian vectors |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-04-01 |
description |
The area in which a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution could be applied is vast; however, a lack of parameter estimation methods and theoretical limitations diminish its potential. Traditionally, the maximum likelihood estimation of parameters has been considered using a representation of the multivariate stable vector through a multivariate normal vector and an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable subordinator. This paper introduces an analytical expectation maximization (EM) algorithm for the estimation of parameters of symmetric multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable random variables. Our numerical results show that the convergence of the proposed algorithm is much faster than that of existing algorithms. Moreover, the likelihood ratio (goodness-of-fit) test for a multivariate <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-stable distribution was implemented. Empirical examples with simulated and real world (stocks, AIS and cryptocurrencies) data showed that the likelihood ratio test can be useful for assessing goodness-of-fit. |
topic |
EM algorithm maximum likelihood method statistical modeling α-stable distribution crypto-currency |
url |
https://www.mdpi.com/2227-7390/9/9/945 |
work_keys_str_mv |
AT audriuskabasinskas ananalyticalemalgorithmforsubgaussianvectors AT leonidassakalauskas ananalyticalemalgorithmforsubgaussianvectors AT ingridavaiciulyte ananalyticalemalgorithmforsubgaussianvectors AT audriuskabasinskas analyticalemalgorithmforsubgaussianvectors AT leonidassakalauskas analyticalemalgorithmforsubgaussianvectors AT ingridavaiciulyte analyticalemalgorithmforsubgaussianvectors |
_version_ |
1721512169254682624 |